A326151 Numbers whose product of prime indices is twice their sum of prime indices.
49, 63, 65, 81, 150, 154, 190, 198, 364, 468, 580, 840, 952, 1080, 1224, 1480, 2128, 2288, 2736, 3440, 5152, 5280, 6624, 8480, 9408, 10816, 12096, 12992, 15552, 16704, 19520, 24960, 26752, 27776, 35712, 44800, 45440, 56576, 57600, 66304, 85248, 101120, 118272
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 49: {4,4} 63: {2,2,4} 65: {3,6} 81: {2,2,2,2} 150: {1,2,3,3} 154: {1,4,5} 190: {1,3,8} 198: {1,2,2,5} 364: {1,1,4,6} 468: {1,1,2,2,6} 580: {1,1,3,10} 840: {1,1,1,2,3,4} 952: {1,1,1,4,7} 1080: {1,1,1,2,2,2,3} 1224: {1,1,1,2,2,7} 1480: {1,1,1,3,12} 2128: {1,1,1,1,4,8} 2288: {1,1,1,1,5,6} 2736: {1,1,1,1,2,2,8} 3440: {1,1,1,1,3,14}
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 80 terms from Jinyuan Wang)
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[1000],Times@@primeMS[#]==2*Plus@@primeMS[#]&]
-
PARI
is(k) = {my(f=factor(k)); for(i=1, #f~, f[i, 1]=primepi(f[i, 1])); factorback(f)==2*sum(i=1, #f~, f[i, 2]*f[i, 1]); } \\ Jinyuan Wang, Jun 27 2020
Comments