A326212 Number of sortable normal multiset partitions of weight n.
1, 1, 4, 15, 59, 230, 901, 3522, 13773, 53847, 210527, 823087, 3218002, 12581319, 49188823, 192312112, 751877137, 2939592383, 11492839729, 44933224559, 175674134309, 686828104551, 2685272063984, 10498530869151, 41045803846015, 160475597429847
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 15 multiset partitions: {} {{1}} {{1,1}} {{1,1,1}} {{1,2}} {{1,1,2}} {{1},{1}} {{1,2,2}} {{1},{2}} {{1,2,3}} {{1},{1,1}} {{1},{1,2}} {{1,1},{2}} {{1},{2,2}} {{1,2},{2}} {{1},{2,3}} {{1,2},{3}} {{1},{1},{1}} {{1},{1},{2}} {{1},{2},{2}} {{1},{2},{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],OrderedQ[Join@@#]&]],{n,0,5}]
-
PARI
seq(n) = my(p=1/eta(x + O(x*x^n))); Vec(((1 - x)*(1 - 2*x) - x^2*p)/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*p)) \\ Andrew Howroyd, May 11 2023
Formula
G.f.: ((1 - x)*(1 - 2*x) - x^2*P(x))/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*P(x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, May 11 2023
Extensions
Terms a(10) and beyond from Andrew Howroyd, May 11 2023
Comments