A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.
1, 1, 2, 8, 35, 147, 600, 2418
Offset: 0
Examples
The a(4) = 35 edge-sets: {} {12} {12,13} {12,13,14} {12,13,14,34} {13} {12,14} {12,13,23} {12,13,23,34} {14} {12,23} {12,13,34} {12,14,24,34} {23} {12,24} {12,14,24} {12,23,24,34} {24} {13,14} {12,14,34} {34} {13,23} {12,23,24} {13,34} {12,23,34} {14,24} {12,24,34} {14,34} {13,14,34} {23,24} {13,23,34} {23,34} {14,24,34} {24,34} {23,24,34}
Links
- Eric Marberg, Crossings and nestings in colored set partitions, arXiv preprint arXiv:1203.5738 [math.CO], 2012.
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
Formula
Conjecture: a(n) = A052161(n - 2) + 1.
Comments