A326300 Steinhaus sums.
2, 6, 8, 16, 18, 22, 24, 40, 42, 46, 48, 56, 58, 62, 64, 96, 98, 102, 104, 112, 114, 118, 120, 136, 138, 142, 144, 152, 154, 158, 160, 224, 226, 230, 232, 240, 242, 246, 248, 264, 266, 270, 272, 280, 282, 286, 288, 320, 322, 326, 328, 336, 338, 342, 344, 360, 362, 366, 368
Offset: 1
Keywords
Links
- Sandor Csörgö, Gordon Simons, On Steinhaus' resolution of the St. Petersburg paradox, Probab. Math. Statist. 14 (1993), 157--172. MR1321758 (96b:60017). See p. 163 and Table 1 p. 171.
Programs
-
PARI
a(n) = sum(k=1, 1+log(n)\log(2), floor(n/2^k+1/2)*2^k);
-
Python
def a(n): s = 0 for k in range(1,n.bit_length()+1): s += ((n + (1 << (k-1))) >> k) << k return s print([a(n) for n in range(1,60)]) # Darío Clavijo, Aug 24 2024
Formula
a(n) = Sum_{k>=1} floor(n/2^k + 1/2)*2^k.
a(n) = 2 * A006520(n-1).