cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326303 Triangular array, read by rows: T(n,k) = numerator of Jtilde_k(n), 1 <= k <= 2*n+2.

Original entry on oeis.org

1, 1, 2, 3, 1, 1, 8, 41, 65, 11, 1, 1, 16, 147, 13247, 907, 109, 73, 1, 1, 128, 8649, 704707, 1739, 101717, 3419, 515, 43, 1, 1, 256, 32307, 660278641, 6567221, 4557449, 29273, 76667, 15389, 251, 67, 1, 1, 1024, 487889, 357852111131, 54281321, 15689290781, 151587391, 115560397, 1659311, 254977, 34061, 1733, 289, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2019

Keywords

Comments

When a general definition was made in a recent paper, it was slightly different from the previous definition. Please check the annotation on page 15 of the paper in 2019.

Examples

			Triangle begins:
      1,       1;
    2/3,     3/4,          1,       1;
   8/15,   41/64,      65/48,    11/8,     1/4,    1/4;
  16/35, 147/256, 13247/8640, 907/576, 109/216, 73/144, 1/36, 1/36;
		

Crossrefs

Cf. A260832 (k=2), A264541 (k=3), A326748 (denominator).

Programs

  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def Jtilde(k, n)
      return 0 if k == 0
      return (2r ** n * f(n)) ** 2 / f(2 * n + 1) if k == 1
      if n == 0
        return 1 if k == 2
        return 0
      end
      if n == 1
        return 3r / 4 if k == 2
        return 1      if k == 3 || k == 4
        return 0
      end
      ((8r * n * n - 8 * n + 3) * Jtilde(k, n - 1) - 4 * (n - 1) ** 2 * Jtilde(k, n - 2) + 4 * Jtilde(k - 2, n - 1)) / (4 * n * n)
    end
    def A326303(n)
      (0..n).map{|i| (1..2 * i + 2).map{|j| Jtilde(j, i).numerator}}.flatten
    end
    p A326303(10)

Formula

4*n^2 * Jtilde_k(n) = (8*n^2 - 8*n + 3) * Jtilde_k(n-1) - 4*(n - 1)^2 * Jtilde_k(n-2) + 4 * Jtilde_{k - 2}(n-1).
Jtilde_n(2*n+1) = Jtilde_n(2*n+2) = 1/A001044(n). So T(n,2*n+1) = T(n,2*n+2) = 1.