cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A326312 Where the number of divisors d(k) reaches a new record for numbers k whose prime factors are of the form 3*j+2.

Original entry on oeis.org

2, 4, 8, 16, 20, 40, 80, 160, 320, 400, 440, 800, 880, 1600, 1760, 3520, 4400, 7040, 8800, 14960, 17600, 29920, 59840, 74800, 119680, 149600, 299200, 598400, 1196800, 1376320, 1720400, 2752640, 3440800, 6881600, 13763200, 27526400, 34408000, 49891600, 68816000
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Mod[#, 3] == 2 &]; s[n_] := DivisorSum[n, 1 &, aQ[#] &]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 2, 10^5}]; seq (* Amiram Eldar, Sep 12 2019 *)
  • PARI
    pkn(x,d,m)={my(fn=factor(x),nf=#fn[,1]);for(k=1,nf,if(fn[k,1]%d!=m,return(0))); numdiv(x)};
    divrecord=0;
    for(k=2,50000000,my(j=pkn(k,3,2));if(j>divrecord,divrecord=j;print1(k,", ")))

Extensions

More terms from Amiram Eldar, Sep 12 2019

A326314 Where the number of divisors d(k) reaches a new record for numbers k whose prime factors are of the form 6*j+5.

Original entry on oeis.org

5, 25, 55, 275, 935, 3025, 4675, 21505, 51425, 107525, 537625, 1182775, 2688125, 3118225, 15591125, 34300475, 77955625, 127847225, 583108075, 639236125, 1406319475, 3196180625, 6008819575, 23907431075, 30044097875, 66097015325, 150220489375, 318467437475, 1123649260525
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Comments

For references and links see A326312.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Mod[#, 6] == 5 &]; s[n_] := DivisorSum[n, 1 &, aQ[#] &]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 2, 10^5}]; seq (* Amiram Eldar, Sep 12 2019 *)
  • PARI
    pkn(x, d, m)={my(fn=factor(x), nf=#fn[, 1]); for(k=1, nf, if(fn[k, 1]%d!=m, return(0))); numdiv(x)};
    divrecord=0;
    for(k=2, 200000000, my(j=pkn(k, 6, 5)); if(j>divrecord, divrecord=j; print1(k, ", ")))

Extensions

More terms from Amiram Eldar, Sep 12 2019
Showing 1-2 of 2 results.