A326312 Where the number of divisors d(k) reaches a new record for numbers k whose prime factors are of the form 3*j+2.
2, 4, 8, 16, 20, 40, 80, 160, 320, 400, 440, 800, 880, 1600, 1760, 3520, 4400, 7040, 8800, 14960, 17600, 29920, 59840, 74800, 119680, 149600, 299200, 598400, 1196800, 1376320, 1720400, 2752640, 3440800, 6881600, 13763200, 27526400, 34408000, 49891600, 68816000
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..300
- Amiram Eldar, A230655 & A071383 and (3, 1)- and (4, 1)-highly composite numbers, thread in SeqFan mailing list, Sep 11 2019.
Programs
-
Mathematica
aQ[n_] := AllTrue[FactorInteger[n][[;; , 1]], Mod[#, 3] == 2 &]; s[n_] := DivisorSum[n, 1 &, aQ[#] &]; sm = 0; seq = {}; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 2, 10^5}]; seq (* Amiram Eldar, Sep 12 2019 *)
-
PARI
pkn(x,d,m)={my(fn=factor(x),nf=#fn[,1]);for(k=1,nf,if(fn[k,1]%d!=m,return(0))); numdiv(x)}; divrecord=0; for(k=2,50000000,my(j=pkn(k,3,2));if(j>divrecord,divrecord=j;print1(k,", ")))
Extensions
More terms from Amiram Eldar, Sep 12 2019
Comments