A326322 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) = sum of the k-th powers of multinomials M(n; mu), where mu ranges over all compositions of n.
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 13, 8, 1, 1, 9, 55, 75, 16, 1, 1, 17, 271, 1077, 541, 32, 1, 1, 33, 1459, 19353, 32951, 4683, 64, 1, 1, 65, 8263, 395793, 2699251, 1451723, 47293, 128, 1, 1, 129, 48115, 8718945, 262131251, 650553183, 87054773, 545835, 256
Offset: 0
Examples
A(2,2) = M(2; 2)^2 + M(2; 1,1)^2 = 1 + 4 = 5. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 2, 3, 5, 9, 17, 33, ... 4, 13, 55, 271, 1459, 8263, ... 8, 75, 1077, 19353, 395793, 8718945, ... 16, 541, 32951, 2699251, 262131251, 28076306251, ...
References
- R. P. Stanley, Enumerative Combinatorics, Vol. I, second edition, Example 3.18.3d page 322.
Links
- Alois P. Heinz, Antidiagonals n = 0..60, flattened
- Wikipedia, Multinomial coefficients
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-i, k)/i!^k, i=1..n)) end: A:= (n, k)-> n!^k*b(n, k): seq(seq(A(n, d-n), n=0..d), d=0..12); # second Maple program: A:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n, j)^k*A(j, k), j=0..n-1)) end: seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n, j]^k A[j, k], {j, 0, n-1}]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 03 2020, after 2nd Maple program *)
Formula
Let E_k(x) = Sum_{n>=0} x^n/n!^k. Then 1/(2-E_k(x)) = Sum_{n>=0} A(n,k)*x^n/n!^k. - Geoffrey Critzer, Dec 16 2020
Comments