cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326322 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) = sum of the k-th powers of multinomials M(n; mu), where mu ranges over all compositions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 13, 8, 1, 1, 9, 55, 75, 16, 1, 1, 17, 271, 1077, 541, 32, 1, 1, 33, 1459, 19353, 32951, 4683, 64, 1, 1, 65, 8263, 395793, 2699251, 1451723, 47293, 128, 1, 1, 129, 48115, 8718945, 262131251, 650553183, 87054773, 545835, 256
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2019

Keywords

Comments

For k>=1, A(n,k) is the number of k-tuples (p_1,p_2,...,p_k) of ordered set partitions of [n] such that the sequence of block lengths in each ordered partition p_i is identical. Equivalently, A(n,k) is the number of chains from s to t where [s,t] is any n-interval in the binomial poset B_k = B*B*...*B (k times), B is the lattice of all finite subsets of {1,2,...} ordered by inclusion and * is the Segre product. See Stanley reference. - Geoffrey Critzer, Dec 16 2020

Examples

			A(2,2) = M(2; 2)^2 + M(2; 1,1)^2 = 1 + 4 = 5.
Square array A(n,k) begins:
   1,   1,     1,       1,         1,           1, ...
   1,   1,     1,       1,         1,           1, ...
   2,   3,     5,       9,        17,          33, ...
   4,  13,    55,     271,      1459,        8263, ...
   8,  75,  1077,   19353,    395793,     8718945, ...
  16, 541, 32951, 2699251, 262131251, 28076306251, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. I, second edition, Example 3.18.3d page 322.

Crossrefs

Columns k=0-2 give: A011782, A000670, A102221.
Rows n=0+1, 2 give A000012, A000051.
Main diagonal gives A326321.
Cf. A183610.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-i, k)/i!^k, i=1..n))
        end:
    A:= (n, k)-> n!^k*b(n, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(binomial(n, j)^k*A(j, k), j=0..n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n, j]^k A[j, k], {j, 0, n-1}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten  (* Jean-François Alcover, Dec 03 2020, after 2nd Maple program *)

Formula

Let E_k(x) = Sum_{n>=0} x^n/n!^k. Then 1/(2-E_k(x)) = Sum_{n>=0} A(n,k)*x^n/n!^k. - Geoffrey Critzer, Dec 16 2020