A326346 Total number of partitions in the partitions of compositions of n.
0, 1, 4, 14, 47, 151, 474, 1457, 4414, 13210, 39155, 115120, 336183, 976070, 2819785, 8110657, 23239662, 66362960, 188930728, 536407146, 1519205230, 4293061640, 12106883585, 34079016842, 95762829405, 268670620736, 752676269695, 2105751165046, 5883798478398
Offset: 0
Keywords
Examples
a(3) = 14 = 1+1+1+2+2+2+2+3 counts the partitions in 3, 21, 111, 2|1, 11|1, 1|2, 1|11, 1|1|1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2313
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1, 0], (p-> p+ [0, p[1]])(add(combinat[numbpart](j)*b(n-j), j=1..n))) end: a:= n-> b(n)[2]: seq(a(n), n=0..32);
-
Mathematica
b[n_] := b[n] = If[n==0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[ PartitionsP[j] b[n-j], {j, 1, n}]]]; a[n_] := b[n][[2]]; a /@ Range[0, 32] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=1..n} k * A060642(n,k).
a(n) ~ c * d^n * n, where d = A246828 = 2.69832910647421123126399866618837633... and c = 0.171490233695958246364725709205670983251448838158816... - Vaclav Kotesovec, Sep 14 2019