cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326355 Number of permutations of length n with at most two descents.

Original entry on oeis.org

1, 1, 2, 6, 23, 93, 360, 1312, 4541, 15111, 48854, 154674, 482355, 1487905, 4553684, 13857492, 41998265, 126912075, 382702050, 1152300166, 3465813071, 10416313221, 31288785152, 93950241096, 282026883573, 846449748943, 2540120998190, 7621973606682
Offset: 0

Views

Author

Robert Brignall, Sep 11 2019

Keywords

Examples

			For n=4, a(4) = 23 because the permutation 4321 is the only one of length 4 to have more than 2 descents.
		

Crossrefs

Permutations with at most one descent are given by A000325.

Programs

  • Maple
    b:= proc(u, o, k) option remember;
          `if`(u+o=0, 1, add(b(u-j, o+j-1, k), j=1..u)+
          `if`(k<2, add(b(u+j-1, o-j, k+1), j=1..o), 0))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..28);  # Alois P. Heinz, Sep 11 2019
  • Mathematica
    LinearRecurrence[{10, -40, 82, -91, 52, -12}, {1, 1, 2, 6, 23, 93}, 30] (* Jean-François Alcover, Mar 01 2020 *)

Formula

G.f: 1/(1-z) + z^2/((1-z)^2*(1-2*z)) + z^3*(1+z-4*z^2)/((1-z)^3*(1-2*z)^2*(1-3*z)).
a(n) = Sum_{k=0..3} A123125(n,k). - Alois P. Heinz, Sep 11 2019
a(n) = 3^n -n*2^n +n^2/2 -n/2. - R. J. Mathar, Sep 25 2019