cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Brignall

Robert Brignall's wiki page.

Robert Brignall has authored 2 sequences.

A326348 Number of permutations of length n in the class of juxtapositions of separable permutations with 21-avoiders.

Original entry on oeis.org

1, 1, 2, 6, 24, 115, 609, 3409, 19728, 116692, 701062, 4261581, 26146111, 161631115, 1005522262, 6289410686, 39525228204, 249427451071, 1579885391573, 10040587733693, 64004713573508, 409139527503760, 2622049900367018, 16843666877986873, 108438876033442579
Offset: 0

Author

Robert Brignall, Sep 11 2019

Keywords

Examples

			There are a(5) = 115 permutations of length 5 which can be expressed as a juxtaposition of a separable permutation (avoiding 2413 and 3142) with an increasing permutation. These 5 cannot be expressed: 25143, 35142, 35241, 41532 and 42531.
		

Crossrefs

Other juxtapositions of algebraic classes with monotone ones are enumerated by A033321, A165538, and A278301.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1 - 6*x + x^2]*(2 - 4*x + x^2)*Sqrt[1 - 8*x + 8*x^2]) / (4*(1 - x)*(-2 + 7*x - 7*x^2 + x^3)) + (-10 + 54*x - 99*x^2 + 66*x^3 - 9*x^4 + Sqrt[1 - 6*x + x^2]*(-2 + 10*x - 15*x^2 + 7*x^3) + Sqrt[1 - 8*x + 8*x^2]*(2 - 6*x + x^2 + 6*x^3 - x^4))/(4*(1 - x)^2*(-2 + 7*x - 7*x^2 + x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 07 2024 *)

Formula

G.f.: (2-4*z+z^2)*x*y/(4*(1-z)*(-2+7*z-7*z^2+z^3)) + ((-2+10*z-15*z^2+7*z^3)*x + (2-6*z+z^2+6*z^3-z^4)*y - 10+54*z-99*z^2+66*z^3-9z^4)/(4*(1-z)^2*(-2+7*z-7*z^2+z^3)) where x=sqrt(1-6*z+z^2) and y=sqrt(1-8*z+8z^2).
a(n) ~ (63 + 8*sqrt(2) + 3*sqrt(41 + 40*sqrt(2))) * 2^(3*n/2 - 1) * (1 + sqrt(2))^(n - 1/2) / (sqrt(Pi) * (73 + 53*sqrt(2)) * n^(3/2)). - Vaclav Kotesovec, Jul 07 2024

A326355 Number of permutations of length n with at most two descents.

Original entry on oeis.org

1, 1, 2, 6, 23, 93, 360, 1312, 4541, 15111, 48854, 154674, 482355, 1487905, 4553684, 13857492, 41998265, 126912075, 382702050, 1152300166, 3465813071, 10416313221, 31288785152, 93950241096, 282026883573, 846449748943, 2540120998190, 7621973606682
Offset: 0

Author

Robert Brignall, Sep 11 2019

Keywords

Examples

			For n=4, a(4) = 23 because the permutation 4321 is the only one of length 4 to have more than 2 descents.
		

Crossrefs

Permutations with at most one descent are given by A000325.

Programs

  • Maple
    b:= proc(u, o, k) option remember;
          `if`(u+o=0, 1, add(b(u-j, o+j-1, k), j=1..u)+
          `if`(k<2, add(b(u+j-1, o-j, k+1), j=1..o), 0))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..28);  # Alois P. Heinz, Sep 11 2019
  • Mathematica
    LinearRecurrence[{10, -40, 82, -91, 52, -12}, {1, 1, 2, 6, 23, 93}, 30] (* Jean-François Alcover, Mar 01 2020 *)

Formula

G.f: 1/(1-z) + z^2/((1-z)^2*(1-2*z)) + z^3*(1+z-4*z^2)/((1-z)^3*(1-2*z)^2*(1-3*z)).
a(n) = Sum_{k=0..3} A123125(n,k). - Alois P. Heinz, Sep 11 2019
a(n) = 3^n -n*2^n +n^2/2 -n/2. - R. J. Mathar, Sep 25 2019