A326364 Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.
1, 0, 0, 2, 426, 987404, 887044205940, 291072121051815578010398, 14704019422368226413234332571239460300433492086, 12553242487939461785560846872353486129110194397301168776798213375239447299205732561174066488
Offset: 0
Keywords
Examples
The a(3) = 2 intersecting set systems with empty intersection: {{1,2},{1,3},{2,3}} {{1,2},{1,3},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}]
Formula
Inverse binomial transform of A326373. - Andrew Howroyd, Aug 12 2019
Extensions
a(6)-a(9) from Andrew Howroyd, Aug 12 2019
Comments