cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A202425 Number of partitions of n into parts having pairwise common factors but no overall common factor.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 1, 6, 0, 5, 0, 2, 2, 9, 0, 8, 2, 4, 3, 16, 0, 22, 5, 6, 5, 19, 2, 35, 8, 14, 6, 44, 4, 55, 13, 16, 19, 64, 6, 82, 17, 39, 31, 108, 10, 105, 40, 66, 46, 161, 14, 182, 61, 97, 72, 207, 37, 287, 85, 144, 93, 357, 59
Offset: 31

Views

Author

Alois P. Heinz, Dec 19 2011

Keywords

Examples

			a(31) = 1: [6,10,15] = [2*3,2*5,3*5].
a(37) = 2: [6,6,10,15], [10,12,15].
a(41) = 3: [6,10,10,15], [6,15,20], [6,14,21].
a(47) = 6: [6,6,10,10,15], [10,10,12,15], [6,6,15,20], [12,15,20], [6,6,14,21], [12,14,21].
a(49) = 5: [6,6,6,6,10,15], [6,6,10,12,15], [10,12,12,15], [6,10,15,18], [10,15,24].
		

Crossrefs

The version with only distinct parts compared is A328672.
The Heinz numbers of these partitions are A328868.
The strict case is A202385, which is essentially the same as A318715.
The version for non-isomorphic multiset partitions is A319759.
The version for set-systems is A326364.
Intersecting partitions are A200976.

Programs

  • Maple
    with(numtheory):
    w:= (m, h)-> mul(`if`(j>=h, 1, j), j=factorset(m)):
    b:= proc(n, i, g, s) option remember; local j, ok, si;
          if n<0 then 0
        elif n=0 then `if`(g>1, 0, 1)
        elif i<2 or member(1, s) then 0
        else ok:= evalb(i<=n);
             si:= map(x->w(x, i), s);
             for j in s while ok do ok:= igcd(i, j)>1 od;
             b(n, i-1, g, si) +`if`(ok, add(b(n-t*i, i-1, igcd(i, g),
                          si union {w(i,i)} ), t=1..iquo(n, i)), 0)
          fi
        end:
    a:= n-> b(n, n, 0, {}):
    seq(a(n), n=31..100);
  • Mathematica
    w[m_, h_] := Product[If[j >= h, 1, j], {j, FactorInteger[m][[All, 1]]}]; b[n_, i_, g_, s_] := b[n, i, g, s] = Module[{j, ok, si}, Which[n<0, 0, n == 0, If[g>1, 0, 1], i<2 || MemberQ[s, 1], 0, True, ok = (i <= n); si = w[#, i]& /@ s; Do[If[ok, ok = (GCD[i, j]>1)], {j, s}]; b[n, i-1, g, si] + If[ok, Sum[b[n-t*i, i-1, GCD[i, g], si ~Union~ {w[i, i]}], {t, 1, Quotient[n, i]}], 0]]]; a[n_] := b[n, n, 0, {}]; Table[a[n], {n, 31, 100}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)
    Table[Length[Select[IntegerPartitions[n],GCD@@#==1&&And@@(GCD[##]>1&)@@@Tuples[#,2]&]],{n,0,40}] (* Gus Wiseman, Nov 04 2019 *)

Formula

a(n > 0) = A328672(n) - 1. - Gus Wiseman, Nov 04 2019

A326365 Number of intersecting antichains with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.

Original entry on oeis.org

1, 0, 0, 1, 23, 1834, 1367903, 229745722873, 423295077919493525420
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.

Examples

			The a(4) = 23 intersecting antichains with empty intersection:
  {{1,2},{1,3},{2,3,4}}
  {{1,2},{1,4},{2,3,4}}
  {{1,2},{2,3},{1,3,4}}
  {{1,2},{2,4},{1,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,3},{1,2,4}}
  {{1,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{1,2,3}}
  {{1,4},{3,4},{1,2,3}}
  {{2,3},{2,4},{1,3,4}}
  {{2,3},{3,4},{1,2,4}}
  {{2,4},{3,4},{1,2,3}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,2,4},{2,3,4}}
  {{1,4},{1,2,3},{2,3,4}}
  {{2,3},{1,2,4},{1,3,4}}
  {{2,4},{1,2,3},{1,3,4}}
  {{3,4},{1,2,3},{1,2,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{2,3},{2,4},{1,3,4}}
  {{1,3},{2,3},{3,4},{1,2,4}}
  {{1,4},{2,4},{3,4},{1,2,3}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Intersecting antichain covers are A305844.
Intersecting covers with empty intersection are A326364.
Antichain covers with empty intersection are A305001.
The binomial transform is the non-covering case A326366.
Covering, intersecting antichains with empty intersection are A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}]

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019

A326366 Number of intersecting antichains of nonempty subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges).

Original entry on oeis.org

1, 1, 1, 2, 28, 1960, 1379273, 229755337549, 423295079757497714059
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint.

Examples

			The a(0) = 1 through a(4) = 28 intersecting antichains with empty intersection:
  {}  {}  {}  {}              {}
              {{12}{13}{23}}  {{12}{13}{23}}
                              {{12}{14}{24}}
                              {{13}{14}{34}}
                              {{23}{24}{34}}
                              {{12}{13}{234}}
                              {{12}{14}{234}}
                              {{12}{23}{134}}
                              {{12}{24}{134}}
                              {{13}{14}{234}}
                              {{13}{23}{124}}
                              {{13}{34}{124}}
                              {{14}{24}{123}}
                              {{14}{34}{123}}
                              {{23}{24}{134}}
                              {{23}{34}{124}}
                              {{24}{34}{123}}
                              {{12}{134}{234}}
                              {{13}{124}{234}}
                              {{14}{123}{234}}
                              {{23}{124}{134}}
                              {{24}{123}{134}}
                              {{34}{123}{124}}
                              {{12}{13}{14}{234}}
                              {{12}{23}{24}{134}}
                              {{13}{23}{34}{124}}
                              {{14}{24}{34}{123}}
                              {{123}{124}{134}{234}}
		

Crossrefs

The case with empty edges allowed is A326375.
Intersecting antichains of nonempty sets are A001206.
Intersecting set systems with empty intersection are A326373.
Antichains of nonempty sets with empty intersection are A006126 or A307249.
The inverse binomial transform is the covering case A326365.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}]

Formula

a(n) = A326375(n) - 1.
a(n) = A001206(n+1) + A307249(n) - A014466(n). - Andrew Howroyd, Aug 14 2019

Extensions

a(7)-a(8) from Andrew Howroyd, Aug 14 2019

A326373 Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) on n vertices.

Original entry on oeis.org

1, 1, 1, 3, 435, 989555, 887050136795, 291072121058024908202443, 14704019422368226413236661148207899662350666147, 12553242487939461785560846872353486129110194529637343578112251094358919036718815137721635299
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is intersecting if no two edges are disjoint.

Examples

			The a(3) = 3 intersecting set systems with empty intersection:
  {}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The inverse binomial transform is the covering case A326364.
Set systems with empty intersection are A318129.
Intersecting set systems are A051185.
Intersecting antichains with empty intersection are A326366.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],And[#=={}||Intersection@@#=={}]&]],{n,0,4}]

Formula

a(n) = A051185(n) - 1 - Sum_{k=1..n-1} binomial(n,k)*A000371(k). - Andrew Howroyd, Aug 12 2019

Extensions

a(6)-a(9) from Andrew Howroyd, Aug 12 2019
Showing 1-4 of 4 results.