cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k).

Original entry on oeis.org

1, 3, 1, 16, 1, 125, 15, 1, 1296, 1, 16807, 735, 140, 1, 262144, 1, 4782969, 76545, 1890, 1, 100000000, 112000, 1, 2357947691, 13835745, 33264, 1, 61917364224, 1, 1792160394037, 3859590735, 270670400, 35135100, 720720, 1, 56693912375296, 1, 1946195068359375
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2019

Keywords

Comments

A hypertree is a connected hypergraph of density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices. A hypergraph is k-uniform if its edges all have size k. The span of a hypertree is the union of its edges.

Examples

			Triangle begins:
           1
           3          1
          16          1
         125         15          1
        1296          1
       16807        735        140          1
      262144          1
     4782969      76545       1890          1
   100000000     112000          1
  2357947691   13835745      33264          1
The T(4,2) = 15 hypertrees:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
		

Crossrefs

Programs

  • Maple
    T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}]

Formula

T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k).

Extensions

Edited by Peter Munn, Mar 05 2025