A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k).
1, 3, 1, 16, 1, 125, 15, 1, 1296, 1, 16807, 735, 140, 1, 262144, 1, 4782969, 76545, 1890, 1, 100000000, 112000, 1, 2357947691, 13835745, 33264, 1, 61917364224, 1, 1792160394037, 3859590735, 270670400, 35135100, 720720, 1, 56693912375296, 1, 1946195068359375
Offset: 1
Examples
Triangle begins: 1 3 1 16 1 125 15 1 1296 1 16807 735 140 1 262144 1 4782969 76545 1890 1 100000000 112000 1 2357947691 13835745 33264 1 The T(4,2) = 15 hypertrees: {{1,4,5},{2,3,5}} {{1,4,5},{2,3,4}} {{1,3,5},{2,4,5}} {{1,3,5},{2,3,4}} {{1,3,4},{2,4,5}} {{1,3,4},{2,3,5}} {{1,2,5},{3,4,5}} {{1,2,5},{2,3,4}} {{1,2,5},{1,3,4}} {{1,2,4},{3,4,5}} {{1,2,4},{2,3,5}} {{1,2,4},{1,3,5}} {{1,2,3},{3,4,5}} {{1,2,3},{2,4,5}} {{1,2,3},{1,4,5}}
Links
- Alois P. Heinz, Rows n = 1..185, flattened
Crossrefs
Programs
-
Maple
T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)): seq(T(n), n=1..20); # Alois P. Heinz, Aug 21 2019
-
Mathematica
Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}]
Formula
T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k).
Extensions
Edited by Peter Munn, Mar 05 2025
Comments