A326380 Numbers m such that beta(m) = tau(m)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
7, 13, 15, 21, 26, 40, 43, 57, 62, 73, 80, 85, 86, 91, 93, 111, 114, 124, 127, 129, 133, 146, 157, 170, 171, 172, 183, 211, 215, 219, 222, 228, 241, 242, 259, 266, 285, 292, 307, 312, 314, 333, 341, 343, 365, 366, 381, 399, 421, 422, 438, 444, 455, 463, 468, 471, 482, 507, 518, 532, 549, 553, 555, 585, 601, 614, 624
Offset: 1
Examples
One example for each type: 15 = 1111_2 = 33_4 with tau(15) = 4 and beta(15) = 2. 3906 = 62 * 63 = 111111_5 = 666_25 = (42,42)_86 = (31,31)_125 = (21,21)_185 = (18,18)_216 = (14,14)_278 = 99_433 = 77_557 = 66_650 = 33_1301 = 22_1952, so tau(3906) = 24 with beta(3906) = 12. 43 = 111_6 is Brazilian prime, so tau(43) = 2 and beta(43) = 1.
Links
Crossrefs
Programs
-
PARI
beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136 isok(n) = beta(n) == numdiv(n)/2; \\ Michel Marcus, Jul 03 2019
Comments