A326381 Numbers m such that beta(m) = tau(m)/2 + 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
31, 63, 255, 273, 364, 511, 546, 728, 777, 931, 1023, 1365, 1464, 2730, 3280, 3549, 3783, 4557, 6560, 7566, 7812, 8191, 9114, 9331, 9841, 10507, 11349, 11718, 13671, 14043, 14763, 15132, 15624, 16383, 18291, 18662, 18915, 19608, 19682, 21845, 22351, 22698
Offset: 1
Examples
One example for each type: 1) 63 = 111111_2 = 333_4 = 77_8 = 33_20 with tau(63) = 6 and beta(63) = 4. 2) 641431602 = 25326 * 25327 is oblong with tau(641431602) = 256. The three Brazilian representations with three digits or more of 641431602 are 999999_37 = (342,342,342)_1369 = (54,54,54)_3446, so beta"(641431602) = 3 and beta(641431602) = tau(641431602)/2 + 1 = 129. 3) 31 = 11111_2 = 111_5 and 8191 = 1111111111111_2 = 11_90 with beta(p) = tau(p)/2 + 1 = 2.
Links
Crossrefs
Programs
-
PARI
beta(n) = sum(i=2, n-2, #vecsort(digits(n, i), , 8)==1); \\ A220136 isok(n) = beta(n) == numdiv(n)/2 + 1; \\ Michel Marcus, Jul 08 2019
Comments