A326411 Triangle T(n,k) read by rows: T(n,k) = the number of ways of seating n people around a table for the second time so that k pairs are maintained. Reflected and rotated sequences are counted as one.
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 5, 5, 0, 1, 3, 12, 15, 20, 9, 0, 1, 23, 70, 112, 91, 49, 14, 0, 1, 177, 544, 740, 640, 302, 96, 20, 0, 1, 1553, 4500, 6003, 4725, 2439, 747, 165, 27, 0, 1, 14963, 41740, 53585, 41420, 20810, 7076, 1550, 260, 35, 0, 1
Offset: 0
Examples
Assuming the initial order was {1,2,3,4,5} (therefore 1 and 5 form a pair as the first and last persons are neighbors in the case of a round table) there are 5 sets of ways of seating them again so that 3 pairs are conserved: {1,2,3,5,4}, {2,3,4,1,5}, {3,4,5,2,1}, {4,5,1,3,2}, {5,1,2,4,3}. Since within each set we do not allow for circular symmetry (e.g., {1,2,3,5,4} and its rotation to form {2,3,5,4,1} are counted as one) nor reflection ({1,2,3,5,4} and {4,5,3,2,1} are also counted as one), the total number of ways is 5 and therefore T(5,3)=5. Unfolded table with n individuals (rows) forming k pairs (columns): 0 1 2 3 4 5 6 7 0 1 1 0 1 2 0 0 1 3 0 0 0 1 4 0 0 2 0 1 5 1 0 5 5 0 1 6 3 12 15 20 9 0 1 7 23 70 112 91 49 14 0 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50; rows 0..17 from Witold Tatkiewicz)
- P. Poulet, Query 4750, L'Intermédiaire des Mathématiciens, 26 (1919), 117-121. (Page 117)
- P. Poulet, Query 4750, L'Intermédiaire des Mathématiciens, 26 (1919), 117-121. (Pages 118, 119)
- P. Poulet, Query 4750, L'Intermédiaire des Mathématiciens, 26 (1919), 117-121. (Pages 120, 121)
- Witold Tatkiewicz, link for java program.
Crossrefs
Programs
-
Java
See Links section
-
Maple
A326411 := proc(n,k) option remember; if k > n or k < 0 then 0; elif k = n then 1; elif k =0 then if n < 5 then 0 ; elif n = 5 then 1 ; elif n = 6 then 3 ; elif n = 7 then 23 ; else # Poulet eq (6) page 120, shifted n->n-2 -(n^3-8*n^2+18*n-21)*procname(n-1,0) -4*(n^2-5*n)*procname(n-2,0) +2*(n^3-11*n^2+33*n-18)*procname(n-3,0) -(n^2-7*n+9)*procname(n-4,0) -(n^3-10*n^2+28*n-15)*procname(n-5,0) ; -%/(n^2-7*n+9) ; end if; elif n <= 3 then 0; else # Poulet eq (3) page 119 2*(n-k)*procname(n-1,k-1)/(n-1)+2*k*procname(n-1,k)/(n-1) +(k-2)*procname(n-2,k-2)/(n-2) - 2*(k-1)*procname(n-2,k-1)/(n-2) + k*procname(n-2,k)/(n-2) ; %*n/k ; end if; end proc: for n from 0 to 12 do for k from 0 to n do printf("%a ",A326411(n,k)) ; end do: printf("\n") ; end do: # R. J. Mathar, Mar 17 2022
-
Mathematica
T[n_, k_] := T[n, k] = Which[k > n || k < 0, 0, k == n, 1, k == 0, Which[n<5, 0, n == 5, 1, n == 6, 3, n == 7, 23, True, pc = -(n^3 - 8*n^2 + 18*n - 21)*T[n-1, 0] - 4*(n^2 - 5*n)*T[n - 2, 0] + 2*(n^3 - 11*n^2 + 33*n - 18)*T[n-3, 0] - (n^2 - 7*n + 9)*T[n-4, 0] - (n^3 - 10*n^2 + 28*n - 15)*T[n-5, 0]; -pc/(n^2 - 7*n + 9)], n <= 3, 0, True, pc = 2*(n-k)*T[n-1, k-1]/(n-1) + 2*k*T[n-1, k]/(n-1) + (k - 2)*T[n-2, k-2]/(n-2) - 2*(k-1)*T[n-2, k-1]/(n-2) + k*T[n-2, k]/(n-2); pc*n/k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 17 2023, after R. J. Mathar *)
-
PARI
Q(n,k)={k*subst(serlaplace(polcoef((1 - 2*x -x^2)/((1 + x)*(1 + (1 - y)*x + y*x^2)) + O(x^n), n-1)), y, k)} row(n)={Vec(if(n<3, 1, (Q(n,y/(y-1))/2 + (-1)^n)*(y-1)^n), -n-1)} \\ Andrew Howroyd, Mar 01 2024
Formula
It appears that Poulet gives recurrences that generate the whole triangle. - N. J. A. Sloane, Mar 09 2022
T(n,n) = 1;
T(n,n-1) = 0 for n >= 1;
T(n,n-2) = n*(n-3)/2 for n >= 4 [Poulet];
T(n,n-3) = n*(n-4)*(2*n-7)/3 for n >= 4 [Poulet, corrected by N. J. A. Sloane, Mar 09 2022]
T(n,n-4) = (25/24)*n^4 + (23/12)*n^3 - (169/24)*n^2 + (85/12)*n - 3 for n > 5 (conjectured); [see Poulet]
T(n,n-5) = (26/15)*n^5 + (25/6)*n^4 - (83/6)*n^3 + (221/6)*n^2 - (299/10)*n + 13 for n > 5 (conjectured); [see Poulet]
T(n,n-6) = (707/240)*n^6 + (2037/240)*n^5 - (413/16)*n^4 + (2233/16)*n^3 - (2777/15)*n^2 + (3739/20)*n - 57 for n > 6 (conjectured). [See Poulet]
Comments