A326600
E.g.f.: A(x,y) = exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!, where A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k, as a triangle of coefficients T(n,k) read by rows.
Original entry on oeis.org
1, 2, 1, 15, 12, 2, 203, 206, 60, 5, 4140, 4949, 1947, 298, 15, 115975, 156972, 75595, 16160, 1535, 52, 4213597, 6301550, 3528368, 945360, 127915, 8307, 203, 190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877, 10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140, 682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147, 51724158235372, 101557600812015, 82635818516305, 36672690416280, 9831937482310, 1665456655065, 180791918475, 12443391060, 520878315, 12004575, 115975
Offset: 0
E.g.f.: A(x,y) = 1 + (2 + y)*x + (15 + 12*y + 2*y^2)*x^2/2! + (203 + 206*y + 60*y^2 + 5*y^3)*x^3/3! + (4140 + 4949*y + 1947*y^2 + 298*y^3 + 15*y^4)*x^4/4! + (115975 + 156972*y + 75595*y^2 + 16160*y^3 + 1535*y^4 + 52*y^5)*x^5/5! + (4213597 + 6301550*y + 3528368*y^2 + 945360*y^3 + 127915*y^4 + 8307*y^5 + 203*y^6)*x^6/6! + (190899322 + 310279615*y + 195764198*y^2 + 62079052*y^3 + 10690645*y^4 + 1001567*y^5 + 47397*y^6 + 877*y^7)*x^7/7! + (10480142147 + 18293310174*y + 12735957930*y^2 + 4614975428*y^3 + 952279230*y^4 + 114741060*y^5 + 7901236*y^6 + 285096*y^7 + 4140*y^8)*x^8/8! + (682076806159 + 1267153412532*y + 959061013824*y^2 + 387848415927*y^3 + 92381300277*y^4 + 13455280629*y^5 + 1200540180*y^6 + 63424134*y^7 + 1805067*y^8 + 21147*y^9)*x^9/9! + (51724158235372 + 101557600812015*y + 82635818516305*y^2 + 36672690416280*y^3 + 9831937482310*y^4 + 1665456655065*y^5 + 180791918475*y^6 + 12443391060*y^7 + 520878315*y^8 + 12004575*y^9 + 115975*y^10)*x^10/10! + ...
such that
A(x,y) = exp(-1-y) * (1 + (exp(x) + y) + (exp(2*x) + y)^2/2! + (exp(3*x) + y)^3/3! + (exp(4*x) + y)^4/4! + (exp(5*x) + y)^5/5! + (exp(6*x) + y)^6/6! + ...)
also
A(x,y) = exp(-1-y) * (exp(y) + exp(x)*exp(y*exp(x)) + exp(4*x)*exp(y*exp(2*x))/2! + exp(9*x)*exp(y*exp(3*x))/3! + exp(16*x)*exp(y*exp(4*x))/4! + exp(25*x)*exp(y*exp(5*x))/5! + exp(36*x)*exp(y*exp(6*x))/6! + ...).
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
[1],
[2, 1],
[15, 12, 2],
[203, 206, 60, 5],
[4140, 4949, 1947, 298, 15],
[115975, 156972, 75595, 16160, 1535, 52],
[4213597, 6301550, 3528368, 945360, 127915, 8307, 203],
[190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877],
[10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140],
[682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147], ...
Main diagonal is A000110 (Bell numbers).
Leftmost column is A020557(n) = A000110(2*n), for n >= 0.
Row sums form A326433.
A326434
E.g.f.: exp(-3) * Sum_{n>=0} (exp(n*x) + 2)^n / n!.
Original entry on oeis.org
1, 4, 47, 895, 24450, 887803, 40818505, 2297393888, 154381810471, 12149510583583, 1102672816721422, 113974516318639363, 13277046519634998953, 1727765194711759098324, 249264545884060054668295, 39606622952407779396832791, 6891271396238954765341535650, 1306288225868329080524305347859, 268542657134280438710389415260401, 59628381166607045580114829853101712
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 47*x^2/2! + 895*x^3/3! + 24450*x^4/4! + 887803*x^5/5! + 40818505*x^6/6! + 2297393888*x^7/7! + 154381810471*x^8/8! + 12149510583583*x^9/9! + 1102672816721422*x^10/10! + ...
such that
A(x) = exp(-3) * (1 + (exp(x) + 2) + (exp(2*x) + 2)^2/2! + (exp(3*x) + 2)^3/3! + (exp(4*x) + 2)^4/4! + (exp(5*x) + 2)^5/5! + (exp(6*x) + 2)^6/6! + ...)
also
A(x) = exp(-3) * (exp(2) + exp(x)*exp(2*exp(x)) + exp(4*x)*exp(2*exp(2*x))/2! + exp(9*x)*exp(2*exp(3*x))/3! + exp(16*x)*exp(2*exp(4*x))/4! + exp(25*x)*exp(2*exp(5*x))/5! + exp(36*x)*exp(2*exp(6*x))/6! + ...).
A326435
E.g.f.: exp(-4) * Sum_{n>=0} (exp(n*x) + 3)^n / n!.
Original entry on oeis.org
1, 5, 69, 1496, 45771, 1840537, 92925982, 5705543791, 416015394341, 35365673566750, 3454046493504337, 382930667897753421, 47708365129614794580, 6622948820406278058625, 1016977626656613380728781, 171637260767262574245781800, 31661205827344145981298200207, 6352045190999137085697971335893
Offset: 0
E.g.f.: A(x) = 1 + 5*x + 69*x^2/2! + 1496*x^3/3! + 45771*x^4/4! + 1840537*x^5/5! + 92925982*x^6/6! + 5705543791*x^7/7! + 416015394341*x^8/8! + 35365673566750*x^9/9! + 3454046493504337*x^10/10! + ...
such that
A(x) = exp(-4) * (1 + (exp(x) + 3) + (exp(2*x) + 3)^2/2! + (exp(3*x) + 3)^3/3! + (exp(4*x) + 3)^4/4! + (exp(5*x) + 3)^5/5! + (exp(6*x) + 3)^6/6! + ...)
also
A(x) = exp(-4) * (exp(3) + exp(x)*exp(3*exp(x)) + exp(4*x)*exp(3*exp(2*x))/2! + exp(9*x)*exp(3*exp(3*x))/3! + exp(16*x)*exp(3*exp(4*x))/4! + exp(25*x)*exp(3*exp(5*x))/5! + exp(36*x)*exp(3*exp(6*x))/6! + ...).
A326436
E.g.f.: exp(-5) * Sum_{n>=0} (exp(n*x) + 4)^n / n!.
Original entry on oeis.org
1, 6, 95, 2307, 78000, 3433831, 188460821, 12508220886, 981371259995, 89426179550623, 9331384489007032, 1102143627943740931, 145924317814992561097, 21480095845779426077750, 3490477008130417972086807, 622292123277813938275834747, 121062971468108753273621477712, 25577093024015935514169919403295
Offset: 0
E.g.f.: A(x) = 1 + 6*x + 95*x^2/2! + 2307*x^3/3! + 78000*x^4/4! + 3433831*x^5/5! + 188460821*x^6/6! + 12508220886*x^7/7! + 981371259995*x^8/8! + 89426179550623*x^9/9! + 9331384489007032*x^10/10! + ...
such that
A(x) = exp(-5) * (1 + (exp(x) + 4) + (exp(2*x) + 4)^2/2! + (exp(3*x) + 4)^3/3! + (exp(4*x) + 4)^4/4! + (exp(5*x) + 4)^5/5! + (exp(6*x) + 4)^6/6! + ...)
also
A(x) = exp(-5) * (exp(4) + exp(x)*exp(4*exp(x)) + exp(4*x)*exp(4*exp(2*x))/2! + exp(9*x)*exp(4*exp(3*x))/3! + exp(16*x)*exp(4*exp(4*x))/4! + exp(25*x)*exp(4*exp(5*x))/5! + exp(36*x)*exp(4*exp(6*x))/6! + ...).
A326437
E.g.f.: exp(-5) * Sum_{n>=0} (2*exp(n*x) + 3)^n / n!.
Original entry on oeis.org
1, 12, 298, 11154, 568004, 37059182, 2978383982, 286712714932, 32370944416718, 4216616929161674, 625354679867770896, 104450484419292872298, 19469192354728354857686, 4018460441266469063161936, 912287005016859245973405858, 226476227666270561445555706042, 61164205107875867322971316940164
Offset: 0
E.g.f.: A(x) = 1 + 12*x + 298*x^2/2! + 11154*x^3/3! + 568004*x^4/4! + 37059182*x^5/5! + 2978383982*x^6/6! + 286712714932*x^7/7! + 32370944416718*x^8/8! + 4216616929161674*x^9/9! + ...
such that
A(x) = exp(-5) * (1 + (2*exp(x) + 3) + (2*exp(2*x) + 3)^2/2! + (2*exp(3*x) + 3)^3/3! + (2*exp(4*x) + 3)^4/4! + (2*exp(5*x) + 3)^5/5! + (2*exp(6*x) + 3)^6/6! + ...)
also
A(x) = exp(-5) * (exp(3) + 2*exp(x)*exp(3*exp(x)) + 2^2*exp(4*x)*exp(3*exp(2*x))/2! + 2^3*exp(9*x)*exp(3*exp(3*x))/3! + 2^4*exp(16*x)*exp(3*exp(4*x))/4! + 2^5*exp(25*x)*exp(3*exp(5*x))/5! + 2^6*exp(36*x)*exp(3*exp(6*x))/6! + ...).
A326430
E.g.f.: exp(-1) * Sum_{n>=0} (exp(n*x) + x)^n / n!.
Original entry on oeis.org
1, 3, 22, 297, 6055, 169431, 6145827, 277912452, 15225719420, 988814989679, 74822364609113, 6505084496930641, 642317112612827029, 71331999557857791694, 8835651007377368848464, 1211946040741011512724559, 182930472229597183037431011, 30216143201862939999461382959, 5435054718681965118312689633935
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 22*x^2/2! + 297*x^3/3! + 6055*x^4/4! + 169431*x^5/5! + 6145827*x^6/6! + 277912452*x^7/7! + 15225719420*x^8/8! + 988814989679*x^9/9! + 74822364609113*x^10/10! + ...
such that
A(x) = exp(-1) * (1 + (exp(x) + x) + (exp(2*x) + x)^2/2! + (exp(3*x) + x)^3/3! + (exp(4*x) + x)^4/4! + (exp(5*x) + x)^5/5! + (exp(6*x) + x)^6/6! + (exp(7*x) + x)^7/7! + (exp(8*x) + x)^8/8! + ...)
also,
A(x) = exp(-1) * (exp(x) + exp(x)*exp(x*exp(x)) + exp(4*x)*exp(x*exp(2*x))/2! + exp(9*x)*exp(x*exp(3*x))/3! + exp(16*x)*exp(x*exp(4*x))/4! + exp(25*x)*exp(x*exp(5*x))/5! + exp(36*x)*exp(x*exp(6*x))/6! + ...).
-
/* Requires appropriate precision */
\p200
{a(n) = my(A = exp(-1) * sum(m=0,n+300, (exp(m*x +x*O(x^n)) + x)^m / m! )); round(n!*polcoeff(A,n))}
for(n=0,20,print1(a(n),", "))
A371710
Expansion of e.g.f. A(x) satisfying Sum_{n>=0} (A(x)^n - x)^n / n! = 1.
Original entry on oeis.org
1, -1, 7, -37, 371, -4741, 72885, -1380541, 29678815, -726074821, 19834534193, -597434105005, 19716033256947, -706675332962509, 27351721308658141, -1136955116183424829, 50513209770352997927, -2388911790071698253845, 119817073596530701766985, -6352554087532686682163053
Offset: 1
E.g.f.: A(x) = x - x^2/2! + 7*x^3/3! - 37*x^4/4! + 371*x^5/5! - 4741*x^6/6! + 72885*x^7/7! - 1380541*x^8/8! + 29678815*x^9/9! - 726074821*x^10/10! + ...
where e.g.f. A(x) satisfies the following sums.
(1) 1 = 1 + (A(x) - x) + (A(x)^2 - x)^2/2! + (A(x)^3 - x)^3/3! + (A(x)^4 - x)^4/4! + (A(x)^5 - x)^5/5! + ...
(2) 1 = exp(-x) + exp(-x*A(x))*A(x) + exp(-x*A(x)^2)*A(x)^4/2! + exp(-x*A(x)^3)*A(x)^9/3! + exp(-x*A(x)^4)*A(x)^16/4! + ...
SPECIFIC VALUES.
A(1/3) = 0.309336999832107073180903710282149168034207161078640395207...
A(1/4) = 0.232922937634173409470673241764259081533730452334005659588...
A(1/5) = 0.187560199855301209894398645611115284037479048219241021351...
A(-1/3) = -0.5146620783815103062311605400508155869729182062358910349...
A(-1/4) = -0.3123628005245983090140211998639545568283470783996606926...
A(-1/5) = -0.2335665203884038676850050992335539648367581317265287642...
-
/* Sum_{n>=0} exp(-x*A(x)^n) * A(x)^(n^2) / n! = 1 */
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = -polcoeff( sum(m=0,sqrtint(#A+1), exp(-x*Ser(A)^m +x*O(x^#A)) * Ser(A)^(m^2)/m! ), #A-1); ); n!*A[n+1]}
for(n=1,30,print1(a(n),", "))
-
/* Sum_{n>=0} (A(x)^n - x)^n / n! = 1 */
{a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = -polcoeff( sum(m=0,#A+1, (Ser(A)^m - x)^m/m! ), #A-1) ); n!*A[n+1]}
for(n=1,30,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments