cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326600 E.g.f.: A(x,y) = exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!, where A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 2, 1, 15, 12, 2, 203, 206, 60, 5, 4140, 4949, 1947, 298, 15, 115975, 156972, 75595, 16160, 1535, 52, 4213597, 6301550, 3528368, 945360, 127915, 8307, 203, 190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877, 10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140, 682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147, 51724158235372, 101557600812015, 82635818516305, 36672690416280, 9831937482310, 1665456655065, 180791918475, 12443391060, 520878315, 12004575, 115975
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2019

Keywords

Examples

			E.g.f.: A(x,y) = 1 + (2 + y)*x + (15 + 12*y + 2*y^2)*x^2/2! + (203 + 206*y + 60*y^2 + 5*y^3)*x^3/3! + (4140 + 4949*y + 1947*y^2 + 298*y^3 + 15*y^4)*x^4/4! + (115975 + 156972*y + 75595*y^2 + 16160*y^3 + 1535*y^4 + 52*y^5)*x^5/5! + (4213597 + 6301550*y + 3528368*y^2 + 945360*y^3 + 127915*y^4 + 8307*y^5 + 203*y^6)*x^6/6! + (190899322 + 310279615*y + 195764198*y^2 + 62079052*y^3 + 10690645*y^4 + 1001567*y^5 + 47397*y^6 + 877*y^7)*x^7/7! + (10480142147 + 18293310174*y + 12735957930*y^2 + 4614975428*y^3 + 952279230*y^4 + 114741060*y^5 + 7901236*y^6 + 285096*y^7 + 4140*y^8)*x^8/8! + (682076806159 + 1267153412532*y + 959061013824*y^2 + 387848415927*y^3 + 92381300277*y^4 + 13455280629*y^5 + 1200540180*y^6 + 63424134*y^7 + 1805067*y^8 + 21147*y^9)*x^9/9! + (51724158235372 + 101557600812015*y + 82635818516305*y^2 + 36672690416280*y^3 + 9831937482310*y^4 + 1665456655065*y^5 + 180791918475*y^6 + 12443391060*y^7 + 520878315*y^8 + 12004575*y^9 + 115975*y^10)*x^10/10! + ...
such that
A(x,y) = exp(-1-y) * (1 + (exp(x) + y) + (exp(2*x) + y)^2/2! + (exp(3*x) + y)^3/3! + (exp(4*x) + y)^4/4! + (exp(5*x) + y)^5/5! + (exp(6*x) + y)^6/6! + ...)
also
A(x,y) = exp(-1-y) * (exp(y) + exp(x)*exp(y*exp(x)) + exp(4*x)*exp(y*exp(2*x))/2! + exp(9*x)*exp(y*exp(3*x))/3! + exp(16*x)*exp(y*exp(4*x))/4! + exp(25*x)*exp(y*exp(5*x))/5! + exp(36*x)*exp(y*exp(6*x))/6! + ...).
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
[1],
[2, 1],
[15, 12, 2],
[203, 206, 60, 5],
[4140, 4949, 1947, 298, 15],
[115975, 156972, 75595, 16160, 1535, 52],
[4213597, 6301550, 3528368, 945360, 127915, 8307, 203],
[190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877],
[10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140],
[682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147], ...
Main diagonal is A000110 (Bell numbers).
Leftmost column is A020557(n) = A000110(2*n), for n >= 0.
Row sums form A326433.
		

Crossrefs

Formula

E.g.f.: exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!.
E.g.f.: exp(-1-y) * Sum_{n>=0} exp(n^2*x) * exp( y*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
T(n,n) = A000110(n) for n >= 0, where A000110 is the Bell numbers.
T(n,0) = A000110(2*n) for n >= 0, where A000110 is the Bell numbers.
Sum_{k=0..n} T(n,k) * (-1)^k = A108459(n) for n >= 0.
Sum_{k=0..n} T(n,k) = A326433(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 2^k = A326434(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 3^k = A326435(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 4^k = A326436(n) for n >= 0.

A326433 E.g.f.: exp(-2) * Sum_{n>=0} (exp(n*x) + 1)^n / n!.

Original entry on oeis.org

1, 3, 29, 474, 11349, 366289, 15125300, 770762673, 47199596441, 3403242019876, 284281430425747, 27150503912943937, 2932403885598294838, 354869660881411722107, 47739034071736749352125, 7090201955561116768761250, 1155624866838027573814278801, 205611555585528308269669174557, 39746979329229607204823274477284
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 1, r = 1.

Examples

			E.g.f.: A(x) = 1 + 3*x + 29*x^2/2! + 474*x^3/3! + 11349*x^4/4! + 366289*x^5/5! + 15125300*x^6/6! + 770762673*x^7/7! + 47199596441*x^8/8! + 3403242019876*x^9/9! + 284281430425747*x^10/10! + 27150503912943937*x^11/11! + 2932403885598294838*x^12/12! + ...
such that
A(x) = exp(-2) * (1 + (exp(x) + 1) + (exp(2*x) + 1)^2/2! + (exp(3*x) + 1)^3/3! + (exp(4*x) + 1)^4/4! + (exp(5*x) + 1)^5/5! + (exp(6*x) + 1)^6/6! + ...)
also
A(x) = exp(-2) * (exp(1) + exp(x)*exp(exp(x)) + exp(4*x)*exp(exp(2*x))/2! + exp(9*x)*exp(exp(3*x))/3! + exp(16*x)*exp(exp(4*x))/4! + exp(25*x)*exp(exp(5*x))/5! + exp(36*x)*exp(exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-2) * sum(n=0,500, (exp(n*x +O(x^31)) + 1)^n/n! ) )))

Formula

E.g.f.: exp(-2) * Sum_{n>=0} (exp(n*x) + 1)^n / n!.
E.g.f.: exp(-2) * Sum_{n>=0} exp(n^2*x) * exp( exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n) = 0 (mod 2), a(3*n-1) = 1 (mod 2), and a(3*n-2) = 1 (mod 2) for n > 0.

A326434 E.g.f.: exp(-3) * Sum_{n>=0} (exp(n*x) + 2)^n / n!.

Original entry on oeis.org

1, 4, 47, 895, 24450, 887803, 40818505, 2297393888, 154381810471, 12149510583583, 1102672816721422, 113974516318639363, 13277046519634998953, 1727765194711759098324, 249264545884060054668295, 39606622952407779396832791, 6891271396238954765341535650, 1306288225868329080524305347859, 268542657134280438710389415260401, 59628381166607045580114829853101712
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 2, r = 1.

Examples

			E.g.f.: A(x) = 1 + 4*x + 47*x^2/2! + 895*x^3/3! + 24450*x^4/4! + 887803*x^5/5! + 40818505*x^6/6! + 2297393888*x^7/7! + 154381810471*x^8/8! + 12149510583583*x^9/9! + 1102672816721422*x^10/10! + ...
such that
A(x) = exp(-3) * (1 + (exp(x) + 2) + (exp(2*x) + 2)^2/2! + (exp(3*x) + 2)^3/3! + (exp(4*x) + 2)^4/4! + (exp(5*x) + 2)^5/5! + (exp(6*x) + 2)^6/6! + ...)
also
A(x) = exp(-3) * (exp(2) + exp(x)*exp(2*exp(x)) + exp(4*x)*exp(2*exp(2*x))/2! + exp(9*x)*exp(2*exp(3*x))/3! + exp(16*x)*exp(2*exp(4*x))/4! + exp(25*x)*exp(2*exp(5*x))/5! + exp(36*x)*exp(2*exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-3) * sum(n=0, 500, (exp(n*x +O(x^31)) + 2)^n/n! ) )))

Formula

E.g.f.: exp(-3) * Sum_{n>=0} (exp(n*x) + 2)^n / n!.
E.g.f.: exp(-3) * Sum_{n>=0} exp(n^2*x) * exp( 2*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n+1) = 0 (mod 2), a(3*n) = 1 (mod 2), and a(3*n+2) = 1 (mod 2) for n >= 0.

A326436 E.g.f.: exp(-5) * Sum_{n>=0} (exp(n*x) + 4)^n / n!.

Original entry on oeis.org

1, 6, 95, 2307, 78000, 3433831, 188460821, 12508220886, 981371259995, 89426179550623, 9331384489007032, 1102143627943740931, 145924317814992561097, 21480095845779426077750, 3490477008130417972086807, 622292123277813938275834747, 121062971468108753273621477712, 25577093024015935514169919403295
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 4, r = 1.

Examples

			E.g.f.: A(x) = 1 + 6*x + 95*x^2/2! + 2307*x^3/3! + 78000*x^4/4! + 3433831*x^5/5! + 188460821*x^6/6! + 12508220886*x^7/7! + 981371259995*x^8/8! + 89426179550623*x^9/9! + 9331384489007032*x^10/10! + ...
such that
A(x) = exp(-5) * (1 + (exp(x) + 4) + (exp(2*x) + 4)^2/2! + (exp(3*x) + 4)^3/3! + (exp(4*x) + 4)^4/4! + (exp(5*x) + 4)^5/5! + (exp(6*x) + 4)^6/6! + ...)
also
A(x) = exp(-5) * (exp(4) + exp(x)*exp(4*exp(x)) + exp(4*x)*exp(4*exp(2*x))/2! + exp(9*x)*exp(4*exp(3*x))/3! + exp(16*x)*exp(4*exp(4*x))/4! + exp(25*x)*exp(4*exp(5*x))/5! + exp(36*x)*exp(4*exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-5) * sum(n=0, 500, (exp(n*x +O(x^31)) + 4)^n/n! ) )))

Formula

E.g.f.: exp(-5) * Sum_{n>=0} (exp(n*x) + 4)^n / n!.
E.g.f.: exp(-5) * Sum_{n>=0} exp(n^2*x) * exp( 4*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n+1) = 0 (mod 2), a(3*n) = 1 (mod 2), and a(3*n+2) = 1 (mod 2) for n >= 0.

A326437 E.g.f.: exp(-5) * Sum_{n>=0} (2*exp(n*x) + 3)^n / n!.

Original entry on oeis.org

1, 12, 298, 11154, 568004, 37059182, 2978383982, 286712714932, 32370944416718, 4216616929161674, 625354679867770896, 104450484419292872298, 19469192354728354857686, 4018460441266469063161936, 912287005016859245973405858, 226476227666270561445555706042, 61164205107875867322971316940164
Offset: 0

Views

Author

Paul D. Hanna, Jul 11 2019

Keywords

Comments

More generally, the following sums are equal:
(1) exp(-(p+1)*r) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-(p+1)*r) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = exp(x), p = 3/2, r = 2.

Examples

			E.g.f.: A(x) = 1 + 12*x + 298*x^2/2! + 11154*x^3/3! + 568004*x^4/4! + 37059182*x^5/5! + 2978383982*x^6/6! + 286712714932*x^7/7! + 32370944416718*x^8/8! + 4216616929161674*x^9/9! + ...
such that
A(x) = exp(-5) * (1 + (2*exp(x) + 3) + (2*exp(2*x) + 3)^2/2! + (2*exp(3*x) + 3)^3/3! + (2*exp(4*x) + 3)^4/4! + (2*exp(5*x) + 3)^5/5! + (2*exp(6*x) + 3)^6/6! + ...)
also
A(x) = exp(-5) * (exp(3) + 2*exp(x)*exp(3*exp(x)) + 2^2*exp(4*x)*exp(3*exp(2*x))/2! + 2^3*exp(9*x)*exp(3*exp(3*x))/3! + 2^4*exp(16*x)*exp(3*exp(4*x))/4! + 2^5*exp(25*x)*exp(3*exp(5*x))/5! + 2^6*exp(36*x)*exp(3*exp(6*x))/6! + ...).
		

Crossrefs

Programs

  • PARI
    /* Requires suitable precision */
    \p200
    Vec(round(serlaplace( exp(-5) * sum(n=0, 500, (2*exp(n*x +O(x^31)) + 3)^n/n! ) )))

Formula

E.g.f.: exp(-5) * Sum_{n>=0} (2*exp(n*x) + 3)^n / n!.
E.g.f.: exp(-5) * Sum_{n>=0} 2^n * exp(n^2*x) * exp( 3*exp(n*x) ) / n!.
Showing 1-5 of 5 results.