A326435 E.g.f.: exp(-4) * Sum_{n>=0} (exp(n*x) + 3)^n / n!.
1, 5, 69, 1496, 45771, 1840537, 92925982, 5705543791, 416015394341, 35365673566750, 3454046493504337, 382930667897753421, 47708365129614794580, 6622948820406278058625, 1016977626656613380728781, 171637260767262574245781800, 31661205827344145981298200207, 6352045190999137085697971335893
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 5*x + 69*x^2/2! + 1496*x^3/3! + 45771*x^4/4! + 1840537*x^5/5! + 92925982*x^6/6! + 5705543791*x^7/7! + 416015394341*x^8/8! + 35365673566750*x^9/9! + 3454046493504337*x^10/10! + ... such that A(x) = exp(-4) * (1 + (exp(x) + 3) + (exp(2*x) + 3)^2/2! + (exp(3*x) + 3)^3/3! + (exp(4*x) + 3)^4/4! + (exp(5*x) + 3)^5/5! + (exp(6*x) + 3)^6/6! + ...) also A(x) = exp(-4) * (exp(3) + exp(x)*exp(3*exp(x)) + exp(4*x)*exp(3*exp(2*x))/2! + exp(9*x)*exp(3*exp(3*x))/3! + exp(16*x)*exp(3*exp(4*x))/4! + exp(25*x)*exp(3*exp(5*x))/5! + exp(36*x)*exp(3*exp(6*x))/6! + ...).
Programs
-
PARI
/* Requires suitable precision */ \p200 Vec(round(serlaplace( exp(-4) * sum(n=0, 500, (exp(n*x +O(x^31)) + 3)^n/n! ) )))
Formula
E.g.f.: exp(-4) * Sum_{n>=0} (exp(n*x) + 3)^n / n!.
E.g.f.: exp(-4) * Sum_{n>=0} exp(n^2*x) * exp( 3*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
a(3*n) = 0 (mod 2), a(3*n-1) = 1 (mod 2), and a(3*n-2) = 1 (mod 2) for n > 0.
Comments