A326440 a(n) = 1 - tau(1) + tau(2) - tau(3) + ... + (-1)^n tau(n), where tau = A000005 is number of divisors.
1, 0, 2, 0, 3, 1, 5, 3, 7, 4, 8, 6, 12, 10, 14, 10, 15, 13, 19, 17, 23, 19, 23, 21, 29, 26, 30, 26, 32, 30, 38, 36, 42, 38, 42, 38, 47, 45, 49, 45, 53, 51, 59, 57, 63, 57, 61, 59, 69, 66, 72, 68, 74, 72, 80, 76, 84, 80, 84, 82, 94, 92, 96, 90, 97, 93, 101, 99
Offset: 0
Keywords
Examples
The first 6 terms of A000005 are 1, 2, 2, 3, 2, 4, so a(6) = 1 - 1 + 2 - 2 + 3 - 2 + 4 = 5.
Links
- Michel Marcus, Table of n, a(n) for n = 0..5000
Crossrefs
Programs
-
Magma
[1] cat [1+(&+[(-1)^(k)*#Divisors(k):k in [1..n]]):n in [1..70]]; // Marius A. Burtea, Jul 10 2019
-
Mathematica
Accumulate[Table[If[k==0,1,(-1)^k*DivisorSigma[0,k]],{k,0,30}]]
-
PARI
a(n) = 1 - sum(k=1, n, (-1)^(k+1)*numdiv(k)); \\ Michel Marcus, Jul 09 2019
Formula
a(n) = 1 + Sum_{k=1..n} (-1)^k A000005(k).
For n > 0, a(n) = 1 + A307704(n).
If p prime, a(p) = a(p-1) - 2. - Bernard Schott, Jul 10 2019
Comments