A326452 Sum of the largest parts of the partitions of n into 8 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 5, 13, 19, 34, 40, 60, 80, 121, 147, 208, 253, 350, 417, 563, 651, 863, 1002, 1299, 1484, 1888, 2151, 2678, 3046, 3729, 4211, 5110, 5721, 6868, 7670, 9142, 10146, 11996, 13319, 15606, 17251, 20084, 22173, 25708, 28253, 32522
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(n-i-j-k-l-m-o-p) * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p]^2, {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]
Formula
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p)^2 * (n-i-j-k-l-m-o-p), where mu is the Möbius function (A008683).