A326443 Number of partitions of n into 8 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 13, 15, 21, 24, 32, 36, 47, 53, 68, 75, 94, 105, 130, 143, 174, 192, 231, 254, 301, 330, 389, 424, 495, 539, 626, 678, 781, 847, 970, 1048, 1192, 1287, 1461, 1572, 1772, 1908, 2144, 2301, 2573, 2762, 3079, 3295
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Count[IntegerPartitions[n,{8}],?(AllTrue[#,SquareFreeQ]&)],{n,0,60}] (* _Harvey P. Dale, Mar 10 2023 *)
Formula
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p)^2, where mu is the Möbius function (A008683).
a(n) = A326444(n)/n for n > 0.