cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326478 a(n) = n*denominator(n*Bernoulli(n-1))/denominator(Bernoulli(n-1)).

Original entry on oeis.org

1, 1, 1, 4, 1, 6, 1, 8, 3, 10, 1, 12, 1, 14, 5, 16, 1, 18, 1, 20, 7, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 32, 11, 34, 35, 36, 1, 38, 13, 40, 1, 42, 1, 44, 3, 46, 1, 48, 7, 50, 17, 52, 1, 54, 55, 56, 19, 58, 1, 60, 1, 62, 21, 64, 13, 66, 1, 68, 23, 70, 1, 72, 1
Offset: 1

Views

Author

Peter Luschny, Jul 16 2019

Keywords

Comments

Empirical: a(2*n) = [x^n] x*(2/(x - 1)^2 - 1) for n >= 1, implying the conjecture that a(2*n) = A103517(n+1) and/or A272651(n).
Conjectural, the odd fixed points > 1 of this sequence are A121707; in other words, for n > 1, denominator(n*Bernoulli(n-1)) = denominator(Bernoulli(n-1)) <=> n | Sum_{k=1..n-1} k^(n-1). (See the conjectures of Thomas Ordowski in A121707.)

Crossrefs

Programs

  • Maple
    A326478 := n -> n*denom(n*bernoulli(n-1))/denom(bernoulli(n-1)):
    db := n -> denom(bernoulli(n)): nb := n -> numer(bernoulli(n)):
    a := n -> n/igcd(n*nb(n-1), db(n-1)): seq(a(n), n=1..73);
  • Mathematica
    a[n_] := Module[{b =  BernoulliB[n - 1]}, n * Denominator[n * b] / Denominator[b]]; Array[a, 100] (* Amiram Eldar, Apr 26 2024 *)
  • PARI
    a(n) = n*denominator(n*bernfrac(n-1))/denominator(bernfrac(n-1)); \\ Michel Marcus, Jul 17 2019

Formula

a(prime(n)) = 1.
a(n) = n/gcd(n*N(n-1), D(n-1)), with N(k)/D(k) = B(k) the k-th Bernoulli number.