A326480 T(n, k) = 2^n * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n. Coefficients of Euler polynomials of order 2.
1, -2, 2, 2, -8, 4, 4, 12, -24, 8, -16, 32, 48, -64, 16, -32, -160, 160, 160, -160, 32, 272, -384, -960, 640, 480, -384, 64, 544, 3808, -2688, -4480, 2240, 1344, -896, 128, -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256
Offset: 0
Examples
Triangle starts: [0] [ 1] [1] [ -2, 2] [2] [ 2, -8, 4] [3] [ 4, 12, -24, 8] [4] [ -16, 32, 48, -64, 16] [5] [ -32, -160, 160, 160, -160, 32] [6] [ 272, -384, -960, 640, 480, -384, 64] [7] [ 544, 3808, -2688, -4480, 2240, 1344, -896, 128] [8] [ -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256] [9] [-15872, -142848, 78336, 182784, -64512, -64512, 21504, 9216, -4608, 512]
Links
- NIST Digital Library of Mathematical Functions, §24.16(i), Higher-Order Analogs (of Bernoulli and Euler Polynomials), Release 1.0.23 of 2019-06-15.
Crossrefs
Programs
-
Maple
E2 := proc(n) (4*exp(x*z))/(exp(z) + 1)^2; series(%, z, 48); 2^n*n!*coeff(%, z, n) end: ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(E2(n), x), n=0..9)]);
-
Mathematica
T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z]+1)^2, {z, 0, n}, {x, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 15 2019 *)
Comments