A326481
a(n) = E2_{n}(0) with E2_{n} the polynomials defined in A326480.
Original entry on oeis.org
1, -2, 2, 4, -16, -32, 272, 544, -7936, -15872, 353792, 707584, -22368256, -44736512, 1903757312, 3807514624, -209865342976, -419730685952, 29088885112832, 58177770225664, -4951498053124096, -9902996106248192, 1015423886506852352
Offset: 0
A326482
a(n) = E2_{n}(-1) with E2_{n} the polynomials defined in A326480.
Original entry on oeis.org
1, -4, 14, -40, 80, -64, -16, -1600, 8960, 29696, -349696, -1423360, 22384640, 89440256, -1903691776, -7615160320, 209865605120, 839460847616, -29088884064256, -116355542548480, 4951498057318400, 19805992204107776, -1015423886490075136
Offset: 0
-
# The function E2(n) is defined in A326480.
seq(subs(x=-1, E2(n)), n=0..22);
-
T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z] + 1)^2, {z, 0, n}, {x, 0, k}]; Table[Sum[(-1)^k T[n, k], {k, 0, n}], {n, 0, 22}] (* Jean-François Alcover, Jul 23 2019 *)
A326483
a(n) = 2^n*E2_{n}(1/2) with E2_{n} the polynomials defined in A326480.
Original entry on oeis.org
1, -2, -4, 40, 80, -1952, -3904, 177280, 354560, -25866752, -51733504, 5535262720, 11070525440, -1633165156352, -3266330312704, 635421069967360, 1270842139934720, -315212388819402752, -630424777638805504, 194181169538675507200
Offset: 0
A326484
a(n) = 2^n*E2_{n}(-1/2) with E2_{n} the polynomials defined in A326480.
Original entry on oeis.org
1, -6, 28, -72, -176, 1824, 11968, -177792, -1062656, 25864704, 155204608, -5535270912, -33211559936, 1633165123584, 9798991003648, -635421070098432, -3812526419542016, 315212388818878464, 1891274332917465088, -194181169538677604352, -1165087017232048848896
Offset: 0
A326485
T(n, k) = 2^A050605(n) * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, -1, 1, 1, -4, 2, 1, 3, -6, 2, -1, 2, 3, -4, 1, -1, -5, 5, 5, -5, 1, 17, -24, -60, 40, 30, -24, 4, 17, 119, -84, -140, 70, 42, -28, 4, -31, 34, 119, -56, -70, 28, 14, -8, 1, -31, -279, 153, 357, -126, -126, 42, 18, -9, 1, 691, -620, -2790, 1020, 1785, -504, -420, 120, 45, -20, 2
Offset: 0
Triangle starts:
[0] [ 1]
[1] [ -1, 1]
[2] [ 1, -4, 2]
[3] [ 1, 3, -6, 2]
[4] [ -1, 2, 3, -4, 1]
[5] [ -1, -5, 5, 5, -5, 1]
[6] [ 17, -24, -60, 40, 30, -24, 4]
[7] [ 17, 119, -84, -140, 70, 42, -28, 4]
[8] [-31, 34, 119, -56, -70, 28, 14, -8, 1]
[9] [-31, -279, 153, 357, -126, -126, 42, 18, -9, 1]
-
E2n := proc(n) (4*exp(x*z))/(exp(z) + 1)^2;
series(%, z, 48); 2^A050605(n)*n!*coeff(%, z, n) end:
for n from 0 to 9 do PolynomialTools:-CoefficientList(E2n(n), x) od;
A326479
T(n, k) = 2^n * n! * [x^k] [z^n] (exp(z) + 1)^2/(4*exp(x*z)), triangle read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, 2, -2, 6, -8, 4, 20, -36, 24, -8, 72, -160, 144, -64, 16, 272, -720, 800, -480, 160, -32, 1056, -3264, 4320, -3200, 1440, -384, 64, 4160, -14784, 22848, -20160, 11200, -4032, 896, -128, 16512, -66560, 118272, -121856, 80640, -35840, 10752, -2048, 256
Offset: 0
[0] [ 1]
[1] [ 2, -2]
[2] [ 6, -8, 4]
[3] [ 20, -36, 24, -8]
[4] [ 72, -160, 144, -64, 16]
[5] [ 272, -720, 800, -480, 160, -32]
[6] [ 1056, -3264, 4320, -3200, 1440, -384, 64]
[7] [ 4160, -14784, 22848, -20160, 11200, -4032, 896, -128]
[8] [16512, -66560, 118272, -121856, 80640, -35840, 10752, -2048, 256]
[9] [65792, -297216, 599040, -709632, 548352, -290304, 107520, -27648, 4608, -512]
-
IE2 := proc(n) (exp(z) + 1)^2/(4*exp(x*z));
series(%, z, 48); 2^n*n!*coeff(%, z, n) end:
for n from 0 to 9 do PolynomialTools:-CoefficientList(IE2(n), x) od;
-
T[n_, k_] := 2^n n! SeriesCoefficient[(E^z + 1)^2/(4 E^(x z)), {x, 0, k}, {z, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
Showing 1-6 of 6 results.
Comments