A326491 Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.
1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 10 subsets: {1} {1} {1} {1} {1} {1} {1} {1} {1} {2} {2,3} {2,3} {2,3} {2,3} {2,3,7} {2,5,6} {2,6,7} {3,4} {2,5} {2,5,6} {2,5,6} {2,5,8} {3,4,5} {3,4,5} {3,4,5} {2,6,7} {2,6,7} {3,5,7} {4,5,6} {3,4,5} {3,4,5} {2,3,7,8} {3,5,7} {3,5,7} {2,5,6,9} {4,5,6,7} {2,3,7,8} {2,5,8,9} {4,5,6,7} {4,5,6,7} {5,6,7,8} {4,6,7,9} {5,6,7,8,9}
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]
Formula
a(n) = A326497(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019
Extensions
a(16)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Mar 04 2025