A326500 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that each block of part i with multiplicity j has a pattern of i*j colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 2, 0, 3, 8, 5, 0, 5, 22, 30, 13, 0, 7, 54, 129, 124, 42, 0, 11, 118, 428, 696, 525, 150, 0, 15, 248, 1293, 3108, 3830, 2358, 576, 0, 22, 490, 3483, 11595, 20720, 20535, 10661, 2266, 0, 30, 950, 9102, 40592, 99140, 141234, 117362, 52824, 9966
Offset: 0
Examples
T(3,1) = 3: 3aaa, 2aa1a, 111aaa. T(3,2) = 8: 3aab, 3abb, 2aa1b, 2ab1b, 2ab1a, 2bb1a, 111aab, 111abb. T(3,3) = 5: 3abc, 2ab1c, 2ac1b, 2bc1a, 111abc. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 2; 0, 3, 8, 5; 0, 5, 22, 30, 13; 0, 7, 54, 129, 124, 42; 0, 11, 118, 428, 696, 525, 150; 0, 15, 248, 1293, 3108, 3830, 2358, 576; 0, 22, 490, 3483, 11595, 20720, 20535, 10661, 2266; 0, 30, 950, 9102, 40592, 99140, 141234, 117362, 52824, 9966; ...
Links
- Alois P. Heinz, Rows n = 1..140, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(n-t, min(n-t, i-1), k)*binomial(k+t-1, t))(i*j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[n-t, Min[n-t, i-1], k] Binomial[k + t - 1, t]][i j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, k - i] (-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
Formula
Sum_{k=1..n} k * T(n,k) = A326656(n).