cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326500 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that each block of part i with multiplicity j has a pattern of i*j colors in (weakly) increasing order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 8, 5, 0, 5, 22, 30, 13, 0, 7, 54, 129, 124, 42, 0, 11, 118, 428, 696, 525, 150, 0, 15, 248, 1293, 3108, 3830, 2358, 576, 0, 22, 490, 3483, 11595, 20720, 20535, 10661, 2266, 0, 30, 950, 9102, 40592, 99140, 141234, 117362, 52824, 9966
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Examples

			T(3,1) = 3: 3aaa, 2aa1a, 111aaa.
T(3,2) = 8: 3aab, 3abb, 2aa1b, 2ab1b, 2ab1a, 2bb1a, 111aab, 111abb.
T(3,3) = 5: 3abc, 2ab1c, 2ac1b, 2bc1a, 111abc.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,   8,    5;
  0,  5,  22,   30,    13;
  0,  7,  54,  129,   124,    42;
  0, 11, 118,  428,   696,   525,    150;
  0, 15, 248, 1293,  3108,  3830,   2358,    576;
  0, 22, 490, 3483, 11595, 20720,  20535,  10661,  2266;
  0, 30, 950, 9102, 40592, 99140, 141234, 117362, 52824, 9966;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000041 (for n>0).
Main diagonal gives A178682.
Row sums give A326654.
T(2n,n) gives A328158.
Cf. A326656.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(n-t, min(n-t, i-1), k)*binomial(k+t-1, t))(i*j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[n-t, Min[n-t, i-1], k] Binomial[k + t - 1, t]][i j], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, k - i] (-1)^i*Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A326656(n).