cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178682 The number of functions f:{1,2,...,n}->{1,2,...,n} such that the number of elements that are mapped to m is divisible by m.

Original entry on oeis.org

1, 1, 2, 5, 13, 42, 150, 576, 2266, 9966, 47466, 237019, 1224703, 6429152, 35842344, 212946552, 1325810173, 8488092454, 55276544436, 362961569008, 2465240278980, 17538501945077, 130454679958312, 1002493810175093, 7838007702606372, 61789072382062638
Offset: 0

Views

Author

Geoffrey Critzer, Dec 25 2010

Keywords

Comments

a(n) is also the number of partitions of n where each block of part i with multiplicity j is marked with a word of length i*j over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the partition. a(3) = 5: 3abc, 2ab1c, 2ac1b, 2bc1a, 111abc. There is a simple bijection between the marked partitions and the functions f. - Alois P. Heinz, Aug 30 2015

Examples

			a(3) = 5 because there are 5 such functions: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (3,3,3).
G.f. = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 42*x^5 + 150*x^6 + 576*x^7 + ...
		

Crossrefs

Main diagonal of A326500, A326616, A326617.
Row sums of A364285, A364310.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&*[(&+[x^(k*j)/Factorial(k*j): k in [0..m]]): j in [1..m]]) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jan 26 2019
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 30 2015
  • Mathematica
    Range[0,20]! CoefficientList[Series[Product[Sum[x^(j i)/(j i)!,{i,0,20}],{j,1,20}],{x,0,20}],x]
  • PARI
    m=30; my(x='x+O('x^m)); Vec(serlaplace(prod(j=1, m, sum(k=0,m, x^(k*j)/(k*j)!)))) \\ G. C. Greubel, Jan 26 2019
    
  • Sage
    m = 30; T = taylor(product(sum(x^(k*j)/factorial(k*j) for k in (0..m)) for j in (1..m)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jan 26 2019

Formula

E.g.f.: Product_{j>=1} Sum_{i>=0} x^(j*i)/(j*i)!.

Extensions

a(21)-a(25) from Alois P. Heinz, Aug 30 2015

A326654 Number of colored integer partitions of n using all colors of an initial interval of the color palette such that each block of part i with multiplicity j has a pattern of i*j colors in (weakly) increasing order.

Original entry on oeis.org

1, 1, 4, 16, 70, 356, 1928, 11428, 69772, 471200, 3350320, 25067040, 195361800, 1559368544, 13165162256, 116528178688, 1074460079840, 10203335290992, 99238550358000, 979455883492672, 10002569256970848, 105957081274335392, 1164108439659208704
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Crossrefs

Row sums of A326500.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(n-t, min(n-t, i-1), k)*binomial(k+t-1, t))(i*j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[With[{t = i j}, b[n - t, Min[n - t, i - 1], k]*Binomial[k + t - 1, t]], {j, 0, n/i}]]];
    a[n_] := Sum[Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}], {k, 0, n}];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)

A326656 Total number of colors in all colored integer partitions of n using all colors of an initial interval of the color palette such that each block of part i with multiplicity j has a pattern of i*j colors in (weakly) increasing order.

Original entry on oeis.org

0, 1, 6, 34, 191, 1208, 7840, 54152, 377396, 2868528, 22719712, 187318016, 1594593876, 13795808224, 125535871760, 1192418406800, 11747646588912, 118703814213296, 1223646182128656, 12755728151091424, 137199027931128992, 1527404635450188128, 17599899510211606336
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Crossrefs

Cf. A326500.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(n-t, min(n-t, i-1), k)*binomial(k+t-1, t))(i*j), j=0..n/i)))
        end:
    a:= n-> add(k*add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i < 1, 0, Sum[With[{t = i j}, b[n - t, Min[n - t, i - 1], k]*Binomial[k + t - 1, t]], {j, 0, n/i}]]];
    a[n_] := Sum[k Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}], {k, 0, n}];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A326500(n,k).

A328158 Number of colored integer partitions of 2n using all colors of an n-set such that each block of part i with multiplicity j has a pattern of i*j colors in (weakly) increasing order.

Original entry on oeis.org

1, 2, 22, 428, 11595, 416010, 18283208, 945843148, 58252818659, 4087684096527, 317934667075551, 28164509102578546, 2781331187964705790, 294700331738309167806, 33811410232219114946609, 4297801013746798965557794, 593679426174377865941838598
Offset: 0

Views

Author

Alois P. Heinz, Oct 05 2019

Keywords

Crossrefs

Cf. A326500.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(n-t, min(n-t, i-1), k)*binomial(k+t-1, t))(i*j), j=0..n/i)))
        end:
    a:= n-> add(b(2*n$2, n-i)*(-1)^i*binomial(n, i), i=0..n):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, Min[n - i j, i - 1], k] Binomial[k + i j - 1, i j], {j, 0, n/i}]]];
    a[n_] := Sum[b[2n, 2n, n-i] (-1)^i Binomial[n, i], {i, 0, n}];
    a /@ Range[0, 18] (* Jean-François Alcover, May 08 2020, after Maple *)

Formula

a(n) = A326500(2n,n).
Showing 1-4 of 4 results.