A326517 Number of normal multiset partitions of weight n where each part has a different size.
1, 1, 2, 12, 28, 140, 956, 3520, 17792, 111600, 1144400, 4884064, 34907936, 214869920, 1881044032, 25687617152, 139175009920, 1098825972608, 8770328141888, 74286112885504, 784394159958848, 15114871659653952, 92392468773724544, 889380453354852416, 7652770202041529856
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 12 normal multiset partitions: {} {{1}} {{1,1}} {{1,1,1}} {{1,2}} {{1,1,2}} {{1,2,2}} {{1,2,3}} {{1},{1,1}} {{1},{1,2}} {{1},{2,2}} {{1},{2,3}} {{2},{1,1}} {{2},{1,2}} {{2},{1,3}} {{3},{1,2}}
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..min(1, n/i)))) end: a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..n), k=0..n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 23 2023
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@Length/@#&]],{n,0,6}]
-
PARI
R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))} seq(n)={sum(k=0, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} \\ Andrew Howroyd, Feb 07 2020
Extensions
Terms a(8) and beyond from Andrew Howroyd, Feb 07 2020
Comments