A326525 Sum of the eighth largest parts in the partitions of n into 9 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 18, 24, 28, 39, 46, 60, 69, 90, 105, 133, 149, 189, 216, 264, 297, 364, 412, 494, 553, 661, 743, 877, 972, 1149, 1280, 1493, 1650, 1922, 2126, 2454, 2702, 3107, 3429, 3916, 4291, 4895, 5374, 6086, 6647
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,SquareFreeQ]&][[;;,8]]],{n,0,60}] (* Harvey P. Dale, Jan 30 2024 *)
Formula
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * p, where mu is the Möbius function (A008683).