cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326525 Sum of the eighth largest parts in the partitions of n into 9 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 18, 24, 28, 39, 46, 60, 69, 90, 105, 133, 149, 189, 216, 264, 297, 364, 412, 494, 553, 661, 743, 877, 972, 1149, 1280, 1493, 1650, 1922, 2126, 2454, 2702, 3107, 3429, 3916, 4291, 4895, 5374, 6086, 6647
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,SquareFreeQ]&][[;;,8]]],{n,0,60}] (* Harvey P. Dale, Jan 30 2024 *)

Formula

a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * p, where mu is the Möbius function (A008683).
a(n) = A326523(n) - A326524(n) - A326526(n) - A326527(n) - A326528(n) - A326529(n) - A326530(n) - A326531(n) - A326532(n).