cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326526 Sum of the seventh largest parts of the partitions of n into 9 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 26, 31, 43, 51, 67, 78, 103, 119, 152, 172, 219, 250, 308, 348, 429, 486, 585, 658, 794, 892, 1063, 1185, 1410, 1572, 1847, 2053, 2407, 2670, 3095, 3425, 3964, 4380, 5030, 5532, 6344, 6974, 7939
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,SquareFreeQ]&][[All,7]]],{n,0,60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 05 2020 *)

Formula

a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * o, where mu is the Möbius function (A008683).
a(n) = A326523(n) - A326524(n) - A326525(n) - A326527(n) - A326528(n) - A326529(n) - A326530(n) - A326531(n) - A326532(n).