A326526 Sum of the seventh largest parts of the partitions of n into 9 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 26, 31, 43, 51, 67, 78, 103, 119, 152, 172, 219, 250, 308, 348, 429, 486, 585, 658, 794, 892, 1063, 1185, 1410, 1572, 1847, 2053, 2407, 2670, 3095, 3425, 3964, 4380, 5030, 5532, 6344, 6974, 7939
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,SquareFreeQ]&][[All,7]]],{n,0,60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 05 2020 *)
Formula
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * o, where mu is the Möbius function (A008683).