A326527 Sum of the sixth largest parts of the partitions of n into 9 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 9, 11, 16, 21, 29, 35, 49, 57, 77, 91, 118, 137, 177, 202, 255, 293, 363, 413, 509, 580, 707, 802, 969, 1097, 1319, 1481, 1764, 1980, 2337, 2615, 3069, 3421, 3982, 4431, 5126, 5689, 6553, 7240, 8301, 9169, 10451
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,SquareFreeQ]&][[All,6]]],{n,0,60}] (* Harvey P. Dale, Jul 05 2022 *)
Formula
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * m, where mu is the Möbius function (A008683).