A326531 Sum of the second largest parts of the partitions of n into 9 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 10, 18, 22, 36, 45, 70, 86, 124, 148, 207, 252, 334, 396, 520, 609, 781, 907, 1144, 1321, 1653, 1906, 2344, 2687, 3278, 3746, 4533, 5143, 6175, 6983, 8305, 9337, 11037, 12362, 14493, 16168, 18831, 20956, 24264, 26876
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Join[{0},Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,SquareFreeQ] &][[All,2]]],{n,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 08 2020 *)
Formula
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * i, where mu is the Möbius function (A008683).