cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326531 Sum of the second largest parts of the partitions of n into 9 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 10, 18, 22, 36, 45, 70, 86, 124, 148, 207, 252, 334, 396, 520, 609, 781, 907, 1144, 1321, 1653, 1906, 2344, 2687, 3278, 3746, 4533, 5143, 6175, 6983, 8305, 9337, 11037, 12362, 14493, 16168, 18831, 20956, 24264, 26876
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,SquareFreeQ] &][[All,2]]],{n,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 08 2020 *)

Formula

a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q)^2 * i, where mu is the Möbius function (A008683).
a(n) = A326523(n) - A326524(n) - A326525(n) - A326526(n) - A326527(n) - A326528(n) - A326529(n) - A326530(n) - A326532(n).