A326570 Number of covering antichains of subsets of {1..n} with different edge-sizes.
2, 1, 1, 4, 17, 186, 3292, 139161, 14224121
Offset: 0
Examples
The a(0) = 2 through a(4) = 17 antichains: {} {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}} {{}} {{1},{2,3}} {{1},{2,3,4}} {{2},{1,3}} {{2},{1,3,4}} {{3},{1,2}} {{3},{1,2,4}} {{4},{1,2,3}} {{1,2},{1,3,4}} {{1,2},{2,3,4}} {{1,3},{1,2,4}} {{1,3},{2,3,4}} {{1,4},{1,2,3}} {{1,4},{2,3,4}} {{2,3},{1,2,4}} {{2,3},{1,3,4}} {{2,4},{1,2,3}} {{2,4},{1,3,4}} {{3,4},{1,2,3}} {{3,4},{1,2,4}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Length[#1]==Length[#2]&],Union@@#==Range[n]&]; Table[Length[cleq[n]],{n,0,6}]
Extensions
a(8) from Andrew Howroyd, Aug 13 2019
Comments