cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326584 a(n) = gcd(n*N(n-1), D(n-1)), with N(n)/D(n) = B(n) the n-th Bernoulli number.

Original entry on oeis.org

1, 2, 3, 1, 5, 1, 7, 1, 3, 1, 11, 1, 13, 1, 3, 1, 17, 1, 19, 1, 3, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 1, 3, 1, 1, 1, 37, 1, 3, 1, 41, 1, 43, 1, 15, 1, 47, 1, 7, 1, 3, 1, 53, 1, 1, 1, 3, 1, 59, 1, 61, 1, 3, 1, 5, 1, 67, 1, 3, 1, 71, 1, 73, 1, 3, 1, 1, 1, 79, 1
Offset: 1

Views

Author

Peter Luschny, Jul 19 2019

Keywords

Comments

Conjectures:
(1) If n > 1 then a(n) = n <=> n is prime or Carmichael (A002997).
(2) If n is odd then a(n) = 1 <=> n = 1 or is a term of A121707.
(3) The fixed points of n^2/a(n) are exactly the numbers satisfying Korselt's criterion (compare A326578 and A324050).

Examples

			a(559) =   1 and 559 is in A121707.
a(561) = 561 and 561 is Carmichael.
a(563) = 563 and 563 is prime.
		

Crossrefs

Cf. A000040, A002997, A121707, A027641/A027642 (Bernoulli), A324050 (Korselt).

Programs

  • Maple
    db := n -> denom(bernoulli(n)): nb := n -> numer(bernoulli(n)):
    a := n -> igcd(n*nb(n-1), db(n-1)): seq(a(n), n=1..80);
  • Mathematica
    a[n_] := With[{b = BernoulliB[n-1]}, GCD[n Numerator[b], Denominator[b]]];
    Array[a, 80] (* Jean-François Alcover, Jul 21 2019 *)
  • PARI
    a(n) = my(b=bernfrac(n-1)); gcd(n*numerator(b), denominator(b)); \\ Michel Marcus, Jul 19 2019

Formula

a(n) divides n, n/a(n) = A326478(n).