A326611 Number of arrangements of rooks with rotational symmetry on a triangular grid with n grid points on each side and no two rooks on the same row, column or diagonal.
2, 1, 1, 4, 3, 5, 10, 9, 15, 40, 41, 65, 162, 189, 321, 780, 919, 1681, 4034, 5281, 9259, 23936, 30665, 57601, 143602, 199577, 367561, 959236, 1323243, 2585133, 6580650, 9609145, 18433799, 49030248, 71211721, 142636377, 371147842, 566921925, 1122881889, 3024341084, 4583822647, 9446124313
Offset: 1
Keywords
Examples
The four cases for n = 4 are: o o o o o o o o X o o X o o o o X o o o X X o o o o o o o o o o o X o o o o X o
Programs
-
Python
def solve(cli): count = 1 for k in range(len(cli)): x,y,z = cli[k] clo = [] for c in cli[k+1:]: if (not x in c) and (not y in c) and (not z in c): clo.append(c) count += 2*solve(clo) return count def A326611(n): c0 = [] for x in range(n): for y in range(x+1,n): z = n-1-x-y if z>y: c0.append((x,y,z)) count = solve(c0) if n%3 == 1: c1 = [c for c in c0 if not n//3 in c] count += solve(c1) return count # Bert Dobbelaere, May 14 2021
Extensions
More terms from Bert Dobbelaere, May 14 2021