A326617 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=A024916(k), read by columns.
1, 1, 2, 2, 1, 5, 9, 9, 10, 9, 3, 13, 44, 96, 152, 155, 124, 140, 160, 113, 48, 16, 4, 42, 225, 680, 1350, 2180, 3751, 6050, 7420, 6870, 5555, 5330, 6300, 6475, 5025, 3000, 1250, 250, 150, 1098, 4155, 11730, 30300, 69042, 127364, 188568, 249690, 365160, 584733
Offset: 0
Examples
T(3,2) = 2: 2a1b, 2b1a. T(3,3) = 5: 3abc, 2ab1c, 2ac1b, 2bc1a, 111abc. Triangle T(n,k) begins: 1; 1; 2; 2, 5; 1, 9, 13; 9, 44, 42; 10, 96, 225, 150; 9, 152, 680, 1098, 576; 3, 155, 1350, 4155, 5201, 2266; 124, 2180, 11730, 26642, 26904, 9966; 140, 3751, 30300, 106281, 182000, 149832, 47466; ...
Links
- Alois P. Heinz, Columns k = 0..40, flattened
- Wikipedia, Partition (number theory)
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t-> b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), n=k..g(k)), k=0..6);
-
Mathematica
g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n - 1]] ; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = i j}, b[n - t, Min[n - t, i - 1], k]*Binomial[k, t]], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {n, k, g[k]}], {k, 0, 6}] // Flatten (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)
Comments