cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326617 Number T(n,k) of colored integer partitions of n using all colors of a k-set such that each block of part i with multiplicity j has a pattern of i*j distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=A024916(k), read by columns.

Original entry on oeis.org

1, 1, 2, 2, 1, 5, 9, 9, 10, 9, 3, 13, 44, 96, 152, 155, 124, 140, 160, 113, 48, 16, 4, 42, 225, 680, 1350, 2180, 3751, 6050, 7420, 6870, 5555, 5330, 6300, 6475, 5025, 3000, 1250, 250, 150, 1098, 4155, 11730, 30300, 69042, 127364, 188568, 249690, 365160, 584733
Offset: 0

Views

Author

Alois P. Heinz, Sep 12 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. All other terms are zero.

Examples

			T(3,2) = 2: 2a1b, 2b1a.
T(3,3) = 5: 3abc, 2ab1c, 2ac1b, 2bc1a, 111abc.
Triangle T(n,k) begins:
  1;
     1;
        2;
        2,  5;
        1,  9,  13;
            9,  44,   42;
           10,  96,  225,   150;
            9, 152,  680,  1098,    576;
            3, 155, 1350,  4155,   5201,   2266;
               124, 2180, 11730,  26642,  26904,   9966;
               140, 3751, 30300, 106281, 182000, 149832, 47466;
               ...
		

Crossrefs

Main diagonal gives A178682.
Row sums give A326648.
Column sums give A326650.
Cf. A000203, A024916, A326616 (this triangle read by rows), A326649, A326651.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 0, numtheory[sigma](n)+g(n-1)) end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
          b(n-t, min(n-t, i-1), k)*binomial(k, t))(i*j), j=0..n/i)))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), n=k..g(k)), k=0..6);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 0, DivisorSigma[1, n] + g[n - 1]] ;
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = i j}, b[n - t, Min[n - t, i - 1], k]*Binomial[k, t]], {j, 0, n/i}]]];
    T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
    Table[Table[T[n, k], {n, k, g[k]}], {k, 0, 6}] // Flatten (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)

Formula

Sum_{k=A185283(n)..n} k * T(n,k) = A326649(n).
Sum_{n=k..A024916(k)} n * T(n,k) = A326651(k).