A326635 Sum of the third largest parts of the partitions of n into 10 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 8, 14, 17, 27, 34, 50, 59, 86, 105, 145, 176, 238, 286, 378, 451, 584, 690, 876, 1022, 1280, 1487, 1824, 2104, 2557, 2932, 3536, 4030, 4803, 5463, 6478, 7327, 8633, 9751, 11420, 12854, 14985, 16822, 19536, 21874
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[j * MoebiusMu[r]^2 * MoebiusMu[q]^2 * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2 , {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
Formula
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * j, where mu is the Möbius function (A008683).