A326636 Sum of the second largest parts of the partitions of n into 10 squarefree parts.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 10, 18, 22, 36, 45, 72, 88, 127, 153, 215, 263, 351, 418, 555, 658, 843, 984, 1252, 1460, 1825, 2118, 2623, 3029, 3697, 4248, 5168, 5914, 7101, 8088, 9676, 10960, 12974, 14647, 17246, 19396, 22653, 25384, 29527
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,SquareFreeQ]&][[All,2]]],{n,0,55}] (* Harvey P. Dale, Jan 03 2023 *)
Formula
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * i, where mu is the Möbius function (A008683).