cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326636 Sum of the second largest parts of the partitions of n into 10 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 10, 18, 22, 36, 45, 72, 88, 127, 153, 215, 263, 351, 418, 555, 658, 843, 984, 1252, 1460, 1825, 2118, 2623, 3029, 3697, 4248, 5168, 5914, 7101, 8088, 9676, 10960, 12974, 14647, 17246, 19396, 22653, 25384, 29527
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,SquareFreeQ]&][[All,2]]],{n,0,55}] (* Harvey P. Dale, Jan 03 2023 *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * i, where mu is the Möbius function (A008683).
a(n) = A326627(n) - A326628(n) - A326629(n) - A326630(n) - A326631(n) - A326632(n) - A326633(n) - A326634(n) - A326635(n) - A326637(n).