A326676 Triangular array: T(n,k) equals the number of n triangle stacks of large Schröder type with k down-triangles in the bottom row of the stack.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 3, 1, 0, 0, 1, 3, 4, 1, 0, 0, 1, 3, 6, 5, 1, 0, 0, 0, 4, 7, 10, 6, 1, 0, 0, 0, 3, 10, 14, 15, 7, 1, 0, 0, 0, 2, 11, 21, 25, 21, 8, 1, 0, 0, 0, 1, 10, 28, 40, 41, 28, 9, 1, 0, 0, 0, 1, 9, 31, 60, 71, 63, 36, 10, 1
Offset: 0
Examples
Triangle begins n\k 0 1 2 3 4 5 6 7 8 9 10 - - - - - - - - - - - - - - - - - - - - - - - 0 | 1 1 | 0 1 2 | 0 1 1 3 | 0 0 2 1 4 | 0 0 1 3 1 5 | 0 0 1 3 4 1 6 | 0 0 1 3 6 5 1 7 | 0 0 0 4 7 10 6 1 8 | 0 0 0 3 10 14 15 7 1 9 | 0 0 0 2 11 21 25 21 8 1 10 | 0 0 0 1 10 28 40 41 28 9 1 ...
Links
Formula
O.g.f. as a continued fraction: (q marks the area of the stack and b marks down-triangles in the base of the stack)
A(q,b) = 1/(1 - q*b - q^2*b/(1 - q^3*b - q^4*b/(1 - q^5*b - q^6*b/( (...) )))) = 1 + b*q + (b + b^2)*q^2 + (2*b^2 + b^3)*q^3 + (b^2 + 3*b^3 + b^4)*q^4 + ....
A(q,b) = 1/(1 - (q + q^2)*b/(1 - q^4*b/(1 - (q^3 + q^6)*b/(1 - q^8*b/(1 - (q^5 + q^10)*b/(1 - q^12*b/( (...) ))))))).
O.g.f. as a ratio of q-series: N(q,b)/D(q,b), where N(q,b) = Sum_{n >= 0} (-1)^n*q^(2*n^2+2*n)*b^n/( (Product_{k = 1..n} 1 - q^(2*k)) * (Product_{k = 1..n+1} 1 - q^(2*k-1)*b) ) and D(q,b) = Sum_{n >= 0} (-1)^n*q^(2*n^2)*b^n/( (Product_{k = 1..n} 1 - q^(2*k)) * (Product_{k = 1..n} 1 - q^(2*k-1)*b) ).
Comments