cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326680 Sum of the ninth largest parts of the partitions of n into 10 primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 8, 8, 10, 15, 17, 19, 23, 24, 30, 34, 38, 44, 54, 53, 67, 73, 83, 87, 105, 107, 131, 136, 156, 161, 200, 186, 233, 232, 275, 271, 335, 315, 398, 373, 456, 439, 550, 493, 636, 589
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,PrimeQ]&][[All,9]]],{n,0,70}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 01 2019 *)

Formula

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * q, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326681(n) - A326682(n) - A326683(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).