A326696 Numbers m with at least one divisor d > 1 such that sigma(d) divides m.
6, 12, 18, 24, 28, 30, 36, 42, 48, 54, 56, 60, 66, 72, 78, 84, 90, 96, 102, 108, 112, 114, 117, 120, 126, 132, 138, 140, 144, 150, 156, 162, 168, 174, 180, 182, 186, 192, 196, 198, 204, 210, 216, 222, 224, 228, 234, 240, 246, 252, 258, 264, 270, 276, 280, 282
Offset: 1
Keywords
Examples
Divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d):1, 3, 4, 7, 12, 28; sigma(d) divides 12 for 4 divisors d > 1: 2, 3 and 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[m: m in [1..10^5] | #[d: d in Divisors(m) | IsIntegral(m / SumOfDivisors(d) ) and d gt 1] gt 0];
-
Maple
filter:= proc(n) local d; uses numtheory; ormap(t -> n mod sigma(t) = 0, divisors(n) minus {1}) end proc: select(filter, [$2..1000]); # Robert Israel, Oct 07 2019
-
Mathematica
aQ[n_] := AnyTrue[Rest @ Divisors[n], Divisible[n, DivisorSigma[1, #]] &]; Select[Range[282], aQ] (* Amiram Eldar, Aug 31 2019 *)
-
PARI
isok(m) = fordiv(m, d, if ((d>1) && (!(m % sigma(d))), return(1))); \\ Michel Marcus, Sep 03 2019
Comments