cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326698 a(n) is the product of divisors d of n such that sigma(d) divides n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 10, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 784, 1, 1, 1, 180, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Jul 19 2019

Keywords

Comments

a(A097603(n)) > 1.
See A173441 and A326697 for number and sum such divisors.

Examples

			For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12;
corresponding sigma(d): 1, 3, 4, 7, 12, 28;
sigma(d) divides n for 4 divisors d: 1, 2, 3, 6;
a(12) = 1 * 2 * 3 * 6 = 36.
		

Crossrefs

Programs

  • Magma
    [&*[d: d in Divisors(n) | IsIntegral(n / SumOfDivisors(d))]: n in [1..100]];
    
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], Divisible[n, DivisorSigma[1, #] &]]; Array[a, 100] (* Amiram Eldar, Jul 21 2019 *)
  • PARI
    a(n) = my(p=1); fordiv(n, d, if (!(n % sigma(d)), p *= d)); p; \\ Michel Marcus, Jul 19 2019