A326701 BII-numbers of set partitions.
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 32, 33, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 256, 258, 264, 266, 288, 512, 513, 520, 521, 528, 1024, 1032, 2048, 2049, 2050, 2051, 2052, 4096, 4098, 8192, 8193, 16384, 32768, 32769
Offset: 1
Examples
The sequence of all set partitions together with their BII numbers begins: 0: {} 1: {{1}} 2: {{2}} 3: {{1},{2}} 4: {{1,2}} 8: {{3}} 9: {{1},{3}} 10: {{2},{3}} 11: {{1},{2},{3}} 12: {{1,2},{3}} 16: {{1,3}} 18: {{2},{1,3}} 32: {{2,3}} 33: {{1},{2,3}} 64: {{1,2,3}} 128: {{4}} 129: {{1},{4}} 130: {{2},{4}} 131: {{1},{2},{4}} 132: {{1,2},{4}} 136: {{3},{4}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[0,1000],UnsameQ@@Join@@bpe/@bpe[#]&]
-
Python
from itertools import chain, count, combinations, islice from sympy.utilities.iterables import multiset_partitions def a_gen(): yield 0 for n in count(1): t = [] for i in chain.from_iterable(combinations(range(1,n+1),r) for r in range(n+1)): if n in i: for j in multiset_partitions(i): t.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j)) yield from sorted(t) A326701_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024
Comments