A326703 BII-numbers of chains of nonempty sets.
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 256, 257, 384, 512, 514, 640, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1408, 1536, 1538, 1664, 2048, 2056, 2176, 4096, 4097, 4104, 4112, 4113, 4120
Offset: 1
Examples
The sequence of all chains of nonempty sets together with their BII-numbers begins: 0: {} 1: {{1}} 2: {{2}} 4: {{1,2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 8: {{3}} 16: {{1,3}} 17: {{1},{1,3}} 24: {{3},{1,3}} 32: {{2,3}} 34: {{2},{2,3}} 40: {{3},{2,3}} 64: {{1,2,3}} 65: {{1},{1,2,3}} 66: {{2},{1,2,3}} 68: {{1,2},{1,2,3}} 69: {{1},{1,2},{1,2,3}} 70: {{2},{1,2},{1,2,3}} 72: {{3},{1,2,3}} 80: {{1,3},{1,2,3}} 81: {{1},{1,3},{1,2,3}} 88: {{3},{1,3},{1,2,3}} 96: {{2,3},{1,2,3}} 98: {{2},{2,3},{1,2,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..4860
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[0,100],stableQ[bpe/@bpe[#],!SubsetQ[#1,#2]&&!SubsetQ[#2,#1]&]&]
-
Python
from itertools import chain, count, combinations, islice from sympy.combinatorics.subsets import ksubsets def subsets(x): for i in range(1,len(x)): for j in ksubsets(x,i): yield(list(j)) def a_gen(): #generator of terms yield 0 for n in count(1): t,v,j = [[]],[],0 for i in chain.from_iterable(combinations(range(1, n+1), r) for r in range(n+1)): if n in i: t[j].append([list(i)]) while n: t.append([]) for i in t[j]: if len(i[-1]) > 1: for k in list(subsets(i[-1])): t[j+1].append(i.copy()+[k]) if len(t[j+1]) < 1: break j += 1 for j in chain.from_iterable(t): v.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j)) yield from sorted(v) A326703_list = list(islice(a_gen(), 55)) # John Tyler Rascoe, Jun 07 2024
Comments