A326753 Number of connected components of the set-system with BII-number n.
0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
The set-system {{1,2},{1,4},{3}} with BII-number 268 has two connected components, so a(268) = 2.
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..10000
- John Tyler Rascoe, Log scatterplot of a(n), n=0..32906.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[csm[bpe/@bpe[n]]],{n,0,100}]
-
Python
from sympy.utilities.iterables import connected_components def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def A326753(n): E,a = [],[bin_i(k) for k in bin_i(n)] m = len(a) for i in range(m): for j in a[i]: for k in range(m): if j in a[k]: E.append((i,k)) return(len(connected_components((list(range(m)),E)))) # John Tyler Rascoe, Jul 16 2024
Formula
a(A072639(n)) = n. - John Tyler Rascoe, Jul 15 2024
Comments