A326815 Dirichlet g.f.: zeta(s)^3 * Product_{p prime} (1 - 2 * p^(-s)).
1, 1, 1, 0, 1, 1, 1, -2, 0, 1, 1, 0, 1, 1, 1, -5, 1, 0, 1, 0, 1, 1, 1, -2, 0, 1, -2, 0, 1, 1, 1, -9, 1, 1, 1, 0, 1, 1, 1, -2, 1, 1, 1, 0, 0, 1, 1, -5, 0, 0, 1, 0, 1, -2, 1, -2, 1, 1, 1, 0, 1, 1, 0, -14, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, -5, -5, 1, 1, 0, 1
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
Table[Sum[(-1)^PrimeNu[n/d] DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, 85}] f[p_, e_] := (e + 1)*(2 - e)/2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
-
PARI
A326815(n) = sumdiv(n,d,((-1)^omega(n/d))*numdiv(d)); \\ Antti Karttunen, Nov 17 2019
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X)/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, Aug 22 2021
Comments