cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A326828 a(n) = (1/2) * Sum_{d|n} mu(n/d) * phi(d) * (psi(d) + 1), where mu = A008683, phi = A000010 and psi = A001615.

Original entry on oeis.org

1, 1, 4, 5, 13, 7, 26, 19, 34, 23, 64, 32, 89, 47, 82, 74, 151, 64, 188, 105, 167, 119, 274, 127, 296, 167, 294, 214, 433, 161, 494, 292, 421, 287, 548, 290, 701, 359, 590, 417, 859, 329, 944, 540, 742, 527, 1126, 506, 1170, 576, 1012, 757, 1429, 576, 1382
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Moebius transform applied twice to triangular numbers (A000217).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
           add(mobius(n/d)*d*(d+1)/2, d=divisors(n))
        end:
    a:= proc(n) option remember;
           add(mobius(n/d)*b(d), d=divisors(n))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    Table[1/2 Sum[MoebiusMu[n/d] EulerPhi[d] (DirichletConvolve[j, MoebiusMu[j]^2, j, d] + 1), {d, Divisors[n]}], {n, 1, 55}]
    Table[1/2 Sum[d (d + 1) DivisorSum[n/d, MoebiusMu[#] MoebiusMu[(n/d)/#] &], {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[Sum[MoebiusMu[j] MoebiusMu[i] x^(i j)/(1 - x^(i j))^3, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} mu(j) * mu(i) * x^(i*j) / (1 - x^(i*j))^3.
Dirichlet g.f.: (zeta(s-1) + zeta(s-2)) / (2 * zeta(s)^2).
a(n) = (1/2) * Sum_{d|n} mu(n/d) * (phi(d) + J_2(d)), where J_2 = A007434.
a(n) = (1/2) * Sum_{d|n} d * (d + 1) * A007427(n/d).
a(n) = Sum_{d|n} mu(n/d) * A007438(d).
Sum_{k=1..n} a(k) ~ n^3 / (6*zeta(3)^2). - Vaclav Kotesovec, Dec 11 2021
Showing 1-1 of 1 results.