cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326830 Expansion of Product_{i>=2, j>=2} 1 / (1 - x^(i*j))^j.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 5, 0, 9, 3, 17, 0, 46, 6, 68, 23, 153, 27, 297, 67, 534, 188, 978, 276, 1932, 620, 3250, 1313, 6033, 2246, 10854, 4361, 18776, 8639, 32831, 14835, 58230, 27635, 98052, 50980, 169522, 88243, 289720, 157179, 486232, 280206, 818006, 478014
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Euler transform of A048050.
Convolution of A326830 and A002865 is A318784. - Vaclav Kotesovec, Oct 26 2019

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<4, 0, sigma(n)-1-n) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    nmax = 47; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[1, k] - k - 1), {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[If[d == 1, 0, d (DivisorSigma[1, d] - d - 1)], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 47}]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k)^A048050(k).
G.f.: exp(Sum_{k>=1} (A001001(k) - A000203(k) - A001157(k) + 1) * x^k / k).
a(n) ~ exp(3^(2/3) * ((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3)/2 - Pi^2 * (3/((Pi^2 - 6)*Zeta(3)))^(1/3) * n^(1/3)/4 - Pi^4 / (32*(Pi^2 - 6)*Zeta(3)) - 1/8) * A^(3/2)* (2*Pi)^(1/24) / (3^(1/8) * ((Pi^2 - 6)*Zeta(3))^(3/8) * n^(1/8)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Oct 26 2019